Hyperspectral Image Classification With Multi-Attention Transformer and Adaptive Superpixel Segmentation-Based Active Learning

被引:86
|
作者
Zhao, Chunhui [1 ,2 ]
Qin, Boao [1 ,2 ]
Feng, Shou [1 ,2 ,3 ]
Zhu, Wenxiang [1 ,2 ]
Sun, Weiwei [4 ]
Li, Wei [3 ]
Jia, Xiuping [5 ]
机构
[1] Harbin Engn Univ, Coll Informat & Commun Engn, Harbin 150001, Peoples R China
[2] Harbin Engn Univ, Key Lab Adv Marine Commun & Informat Technol, Minist Ind & Informat Technol, Harbin 150001, Peoples R China
[3] Beijing Inst Technol, Sch Informat & Elect, Beijing 100081, Peoples R China
[4] Ningbo Univ, Coll Architectural Engn Civil Engn & Environm, Ningbo 315211, Peoples R China
[5] Univ New South Wales, Sch Engn & Informat Technol, Canberra, ACT 2612, Australia
基金
中国国家自然科学基金;
关键词
Hyperspectral image classification; multi-attention transformer; active learning; adoptive superpixel segmentation; COLLABORATIVE REPRESENTATION; NEURAL-NETWORK; LABELS;
D O I
10.1109/TIP.2023.3287738
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Deep learning (DL) based methods represented by convolutional neural networks (CNNs) are widely used in hyperspectral image classification (HSIC). Some of these methods have strong ability to extract local information, but the extraction of long-range features is slightly inefficient, while others are just the opposite. For example, limited by the receptive fields, CNN is difficult to capture the contextual spectral-spatial features from a long-range spectral-spatial relationship. Besides, the success of DL-based methods is greatly attributed to numerous labeled samples, whose acquisition are time-consuming and cost-consuming. To resolve these problems, a hyperspectral classification framework based on multi-attention Transformer (MAT) and adaptive superpixel segmentation-based active learning (MAT-ASSAL) is proposed, which successfully achieves excellent classification performance, especially under the condition of small-size samples. Firstly, a multi-attention Transformer network is built for HSIC. Specifically, the self-attention module of Transformer is applied to model long-range contextual dependency between spectral-spatial embedding. Moreover, in order to capture local features, an outlook-attention module which can efficiently encode fine-level features and contexts into tokens is utilized to improve the correlation between the center spectral-spatial embedding and its surroundings. Secondly, aiming to train a excellent MAT model through limited labeled samples, a novel active learning (AL) based on superpixel segmentation is proposed to select important samples for MAT. Finally, to better integrate local spatial similarity into active learning, an adaptive superpixel (SP) segmentation algorithm, which can save SPs in uninformative regions and preserve edge details in complex regions, is employed to generate better local spatial constraints for AL. Quantitative and qualitative results indicate that the MAT-ASSAL outperforms seven state-of-the-art methods on three HSI datasets.
引用
收藏
页码:3606 / 3621
页数:16
相关论文
共 50 条
  • [21] DEEP CONVOLUTIONAL NETWORKS WITH SUPERPIXEL SEGMENTATION FOR HYPERSPECTRAL IMAGE CLASSIFICATION
    Cao, Jiayan
    Chen, Zhao
    Wang, Bin
    2016 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2016, : 3310 - 3313
  • [22] Superpixel-Based Multitask Learning Framework for Hyperspectral Image Classification
    Jia, Sen
    Deng, Bin
    Zhu, Jiasong
    Jia, Xiuping
    Li, Qingquan
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2017, 55 (05): : 2575 - 2588
  • [23] Double Attention Transformer for Hyperspectral Image Classification
    Tang, Ping
    Zhang, Meng
    Liu, Zhihui
    Song, Rong
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2023, 20
  • [24] Contrastive Learning Based on Transformer for Hyperspectral Image Classification
    Hu, Xiang
    Li, Teng
    Zhou, Tong
    Liu, Yu
    Peng, Yuanxi
    APPLIED SCIENCES-BASEL, 2021, 11 (18):
  • [25] Superpixel Contracted Graph-Based Learning for Hyperspectral Image Classification
    Sellars, Philip
    Aviles-Rivero, Angelica, I
    Schonlieb, Carola-Bibiane
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2020, 58 (06): : 4180 - 4193
  • [26] Hyperspectral image classification based on superpixel merging and broad learning system
    Xie, Fuding
    Wang, Rui
    Jin, Cui
    Wang, Geng
    PHOTOGRAMMETRIC RECORD, 2024, 39 (186): : 435 - 456
  • [27] Hierarchical Attention Transformer for Hyperspectral Image Classification
    Arshad, Tahir
    Zhang, Junping
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2024, 21 : 1 - 5
  • [28] MAXFormer: Enhanced transformer for medical image segmentation with multi-attention and multi-scale features fusion
    Liang, Zhiwei
    Zhao, Kui
    Liang, Gang
    Li, Siyu
    Wu, Yifei
    Zhou, Yiping
    KNOWLEDGE-BASED SYSTEMS, 2023, 280
  • [29] Hyperspectral image denoising based on superpixel segmentation and band segmentation
    Li, Huajun
    Jiang, Junzheng
    Zhou, Fang
    Quan, Yinghui
    Xi'an Dianzi Keji Daxue Xuebao/Journal of Xidian University, 2024, 51 (05): : 122 - 135
  • [30] Hyperspectral Image Classification Based on Superpixel Feature Subdivision and Adaptive Graph Structure
    Bai, Jing
    Shi, Wei
    Xiao, Zhu
    Regan, Amelia C.
    Ali, Talal Ahmed Ali
    Zhu, Yongdong
    Zhang, Rui
    Jiao, Licheng
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60