Discrete matrix hypergeometric functions

被引:10
|
作者
Cuchta, Tom [1 ]
Grow, David [2 ]
Wintz, Nick [3 ]
机构
[1] Fairmont State Univ, Dept Comp Sci & Math, 1201 Locust Ave, Fairmont, WV 26554 USA
[2] Missouri Univ Sci & Technol, BDepartment Math & Stat, 400 West 12th St, Rolla, MO 65409 USA
[3] Lindenwood Univ, Dept Math Comp Sci & Informat Technol, 209 S Kingshighway, St Charles, MO 63301 USA
关键词
Hypergeometric series; Matrix special functions; Difference equation; Convergence; Divergence; Matrix analysis; GAMMA;
D O I
10.1016/j.jmaa.2022.126716
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We generalize the scalar discrete hypergeometric series to allow for matrix parameters. We show their connection to classical matrix hypergeometric series, derive conditions for convergence on the boundary disk, show criteria for divergence, derive integral representations, and establish some difference equations they solve. We also highlight the special case of discrete matrix Bessel functions, whose scalar analogue has proved useful in applications. (c) 2022 Elsevier Inc. All rights reserved.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] Laplace approximations for hypergeometric functions with matrix argument
    Butler, RW
    Wood, ATA
    ANNALS OF STATISTICS, 2002, 30 (04): : 1155 - 1177
  • [22] On the incomplete second Appell hypergeometric matrix functions
    Verma, Ashish
    Yadav, Sarasvati
    LINEAR & MULTILINEAR ALGEBRA, 2021, 69 (09): : 1747 - 1760
  • [24] On the basic hypergeometric matrix functions of two variables
    Dwivedi, Ravi
    Sahai, Vivek
    LINEAR & MULTILINEAR ALGEBRA, 2019, 67 (01): : 1 - 19
  • [25] Positive definite matrix functions on spheres defined by hypergeometric functions
    Guella, J. C.
    Menegatto, V. A.
    INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2019, 30 (10) : 774 - 789
  • [26] Discrete Analogues of the Erdelyi Type Integrals for Hypergeometric Functions
    Vyas, Yashoverdhan
    Bhatnagar, Anand V.
    Fatawat, Kalpana
    Suthar, D. L.
    Purohit, S. D.
    JOURNAL OF MATHEMATICS, 2022, 2022
  • [27] Laplace approximations for hypergeometric functions with Hermitian matrix argument
    Butler, Ronald W.
    Wood, Andrew T. A.
    JOURNAL OF MULTIVARIATE ANALYSIS, 2022, 192
  • [28] On the incomplete Srivastava's triple hypergeometric matrix functions
    Verma, Ashish
    QUAESTIONES MATHEMATICAE, 2021, 44 (07) : 881 - 904
  • [29] Some properties of Ψ-gamma, Ψ-beta and Ψ-hypergeometric matrix functions
    Verma, Ashish
    Yadav, Komal Singh
    Sharan, Bhagwat
    Suthar, D. L.
    ANALYSIS-INTERNATIONAL MATHEMATICAL JOURNAL OF ANALYSIS AND ITS APPLICATIONS, 2024, 44 (03): : 233 - 243
  • [30] Laplace approximations to hypergeometric functions of two matrix arguments
    Butler, RW
    Wood, ATA
    JOURNAL OF MULTIVARIATE ANALYSIS, 2005, 94 (01) : 1 - 18