Power Transformer Fault Detection: A Comparison of Standard Machine Learning and autoML Approaches

被引:6
|
作者
Santamaria-Bonfil, Guillermo [1 ]
Arroyo-Figueroa, Gustavo [2 ]
Zuniga-Garcia, Miguel A. [3 ]
Ramos, Carlos Gustavo Azcarraga [2 ]
Bassam, Ali [4 ]
机构
[1] BBVA Mexico, Data Portfolio Manager Dept, Mexico City 06600, Mexico
[2] Inst Nacl Elect & Energias Limpias, Cuernavaca 62490, Mexico
[3] PCI Energy Solut, Norman, OK 73072 USA
[4] Univ Autonoma Yucatan, Fac Ingn, Merida 97000, Mexico
关键词
transformer fault diagnosis; machine learning; automatic machine learning; power systems; DISSOLVED-GAS ANALYSIS; HEALTH INDEX; CLASSIFICATION; DIAGNOSIS;
D O I
10.3390/en17010077
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
A key component for the performance, availability, and reliability of power grids is the power transformer. Although power transformers are very reliable assets, the early detection of incipient degradation mechanisms is very important to preventing failures that may shorten their residual life. In this work, a comparative analysis of standard machine learning (ML) algorithms (such as single and ensemble classification algorithms) and automatic machine learning (autoML) classifiers is presented for the fault diagnosis of power transformers. The goal of this research is to determine whether fully automated ML approaches are better or worse than traditional ML frameworks that require a human in the loop (such as a data scientist) to identify transformer faults from dissolved gas analysis results. The methodology uses a transformer fault database (TDB) gathered from specialized databases and technical literature. Fault data were processed using the Duval pentagon diagnosis approach and user-expert knowledge. Parameters from both single and ensemble classifiers were optimized through standard machine learning procedures. The results showed that the best-suited algorithm to tackle the problem is a robust, automatic machine learning classifier model, followed by standard algorithms, such as neural networks and stacking ensembles. These results highlight the ability of a robust, automatic machine learning model to handle unbalanced power transformer fault datasets with high accuracy, requiring minimum tuning effort by electrical experts. We also emphasize that identifying the most probable transformer fault condition will reduce the time required to find and solve a fault.
引用
收藏
页数:22
相关论文
共 50 条
  • [11] Machine Learning Approaches to Early Fault Detection and Identification in NFV Architectures
    Elmajed, Arij
    Aghasaryan, Armen
    Fabre, Eric
    PROCEEDINGS OF THE 2020 6TH IEEE CONFERENCE ON NETWORK SOFTWARIZATION (NETSOFT 2020): BRIDGING THE GAP BETWEEN AI AND NETWORK SOFTWARIZATION, 2020, : 200 - 208
  • [12] Fault Detection at Power Transmission Lines by Extreme Learning Machine
    Ertugrul, Omer Faruk
    Tagluk, M. Emin
    Kaya, Yilmaz
    2013 21ST SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE (SIU), 2013,
  • [13] Application of Machine Learning algorithms for power systems fault detection
    Bouchiba, Nouha
    Kaddouri, Azeddine
    2021 9TH INTERNATIONAL CONFERENCE ON SYSTEMS AND CONTROL (ICSC'21), 2021, : 127 - 132
  • [14] Comparison of automated machine learning (AutoML) libraries in time series forecasting
    Akkurt, Nagihan
    Hasgül, Servet
    Journal of the Faculty of Engineering and Architecture of Gazi University, 2024, 39 (03): : 1693 - 1701
  • [15] A Comparative Study of Power Transformer Winding Fault Diagnosis Using Machine Learning Algorithms
    Dlamini, G. A. Z.
    Thango, B. A.
    Bokoro, P. N.
    2024 32ND SOUTHERN AFRICAN UNIVERSITIES POWER ENGINEERING CONFERENCE, SAUPEC, 2024, : 26 - 30
  • [16] Water Desalination Fault Detection Using Machine Learning Approaches: A Comparative Study
    Derbali, Morched
    Buhari, Seyed M.
    Tsaramirsis, Georgios
    Stojmenovic, Milos
    Jerbi, H.
    Abdelkrim, M. N.
    Al-Beirutty, Mohammad H.
    IEEE ACCESS, 2017, 5 : 23266 - 23275
  • [17] Application of Machine Learning Algorithms for Fault Detection and Diagnosis in Power Systems
    Haripriya, M. P.
    Vasanth, Durai R.
    Anand, M. Suresh
    Kulkarni, Vikas Vitthal
    Farook, S.
    Kumar, K. R. Senthil
    2024 INTERNATIONAL CONFERENCE ON ADVANCES IN COMPUTING, COMMUNICATION AND APPLIED INFORMATICS, ACCAI 2024, 2024,
  • [18] Fault Detection System Using Machine Learning on Geothermal Power Plant
    Zulkarnain
    Surjandari, Isti
    Bramasta, Resha Rafizqi
    Laoh, Enrico
    2019 16TH INTERNATIONAL CONFERENCE ON SERVICE SYSTEMS AND SERVICE MANAGEMENT (ICSSSM2019), 2019,
  • [19] A Machine Learning-Based Approach for Fault Detection in Power Systems
    Ilius, Pathan
    Almuhaini, Mohammad
    Javaid, Muhammad
    Abido, Mohammad
    ENGINEERING TECHNOLOGY & APPLIED SCIENCE RESEARCH, 2023, 13 (04) : 11216 - 11221
  • [20] A Hybrid machine-learning method for oil-immersed power transformer fault diagnosis
    Yang, Xiaohui
    Chen, Wenkai
    Li, Anyi
    Yang, Chunsheng
    IEEJ TRANSACTIONS ON ELECTRICAL AND ELECTRONIC ENGINEERING, 2020, 15 (04) : 501 - 507