Algorithm 1035: A Gradient-based Implementation of the Polyhedral Active Set Algorithm

被引:2
|
作者
Hager, William W. [1 ]
Zhang, Hongchao [2 ]
机构
[1] Univ Florida, Dept Math, POB 118105, Gainesville, FL 32611 USA
[2] Louisiana State Univ, Dept Math, 303 Lockett Hall, Baton Rouge, LA 70803 USA
来源
基金
美国国家科学基金会;
关键词
Nonlinear optimization; polyhedral-constrained optimization; active set method; gradient projection method; projection on polyhedron; conjugate gradient method; PASA; PPROJ; CG_DESCENT; NAPHEAP; INTERIOR-POINT ALGORITHM; GLOBAL CONVERGENCE; OPTIMIZATION; DESCENT;
D O I
10.1145/3583559
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
The Polyhedral Active Set Algorithm (PASA) is designed to optimize a general nonlinear function over a polyhedron. Phase one of the algorithm is a nonmonotone gradient projection algorithm, while phase two is an active set algorithm that explores faces of the constraint polyhedron. A gradient-based implementation is presented, where a projected version of the conjugate gradient algorithm is employed in phase two. Asymptotically, only phase two is performed. Comparisons are given with IPOPT using polyhedral-constrained problems from CUTEst and the Maros/Meszaros quadratic programming test set.
引用
收藏
页数:13
相关论文
共 50 条
  • [31] Gradient-Based Worst Case Search Algorithm for Robust Optimization
    Chiariello, Andrea G.
    Formisano, Alessandro
    Martone, Raffaele
    Pizzo, Francesco
    [J]. IEEE TRANSACTIONS ON MAGNETICS, 2015, 51 (03)
  • [32] A GRADIENT-BASED ALGORITHM FOR THE STATE INITIALIZATION OF CONTROL-SYSTEMS
    CHENG, XJ
    HATZIADONIU, C
    [J]. IEEE TRANSACTIONS ON POWER SYSTEMS, 1991, 6 (04) : 1349 - 1355
  • [33] ON THE GRADIENT-BASED ALGORITHM FOR MATRIX FACTORIZATION APPLIED TO DIMENSIONALITY REDUCTION
    Nikulin, Vladimir
    McLachlan, Geoffrey J.
    [J]. BIONFORMATICS 2010: PROCEEDINGS OF THE FIRST INTERNATIONAL CONFERENCE ON BIOINFORMATICS, 2010, : 147 - 152
  • [34] A Stochastic Gradient-Based Projection Algorithm for Distributed Constrained Optimization
    Zhang, Keke
    Gao, Shanfu
    Chen, Yingjue
    Zheng, Zuqing
    Lu, Qingguo
    [J]. NEURAL INFORMATION PROCESSING, ICONIP 2023, PT I, 2024, 14447 : 356 - 367
  • [35] A Gradient-based Algorithm for Optimizing Sensing Matrix with Normalization Constraint
    Lu, Zeru
    Bai, Huang
    Sun, Binbin
    [J]. PROCEEDINGS OF THE 2016 IEEE 11TH CONFERENCE ON INDUSTRIAL ELECTRONICS AND APPLICATIONS (ICIEA), 2016, : 2376 - 2380
  • [36] Distributed gradient-based consensus optimization algorithm and convergence analysis
    Liang, Shu
    Peng, Kaixiang
    [J]. Gongcheng Kexue Xuebao/Chinese Journal of Engineering, 2020, 42 (04): : 434 - 440
  • [37] Enhanced gradient-based algorithm for the estimation of fingerprint orientation fields
    Wang, Yi
    Hu, Jiankun
    Han, Fengling
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2007, 185 (02) : 823 - 833
  • [38] A supervised gradient-based learning algorithm for optimized entity resolution
    Reyes-Galaviz, Orion F.
    Pedrycz, Witold
    He, Ziyue
    Pizzi, Nick J.
    [J]. DATA & KNOWLEDGE ENGINEERING, 2017, 112 : 106 - 129
  • [39] Parallelization of Gradient-based Edge Detection Algorithm on Multicore processors
    Atweh, Hanadi Kassem
    Hamandi, Lama
    Zekri, Ahmed
    Zantout, Rached
    [J]. 2018 SIXTH INTERNATIONAL CONFERENCE ON DIGITAL INFORMATION, NETWORKING, AND WIRELESS COMMUNICATIONS (DINWC), 2018, : 59 - 64
  • [40] A Gradient-based Adaptive Nonlocal Means Algorithm for Image Denoising
    Zhang, Quan
    Luo, Limin
    Gui, Zhiguo
    Li, Yuanjin
    [J]. FIFTH INTERNATIONAL CONFERENCE ON DIGITAL IMAGE PROCESSING (ICDIP 2013), 2013, 8878