Two-Dimensional Gross-Pitaevskii Equation With Space-Time White Noise
被引:1
|
作者:
de Bouard, Anne
论文数: 0引用数: 0
h-index: 0
机构:
Ecole Polytech, CMAP, CNRS, IP Paris, F-91128 Palaiseau, FranceEcole Polytech, CMAP, CNRS, IP Paris, F-91128 Palaiseau, France
de Bouard, Anne
[1
]
Debussche, Arnaud
论文数: 0引用数: 0
h-index: 0
机构:
Univ Rennes, CNRS, IRMAR UMR 6625, F-35000 Rennes, France
Inst Univ France, Paris, FranceEcole Polytech, CMAP, CNRS, IP Paris, F-91128 Palaiseau, France
Debussche, Arnaud
[2
,3
]
Fukuizumi, Reika
论文数: 0引用数: 0
h-index: 0
机构:
Tohoku Univ, Grad Sch Informat Sci, Res Ctr Pure & Appl Math, Sendai, Miyagi 9808579, JapanEcole Polytech, CMAP, CNRS, IP Paris, F-91128 Palaiseau, France
Fukuizumi, Reika
[4
]
机构:
[1] Ecole Polytech, CMAP, CNRS, IP Paris, F-91128 Palaiseau, France
[2] Univ Rennes, CNRS, IRMAR UMR 6625, F-35000 Rennes, France
[3] Inst Univ France, Paris, France
[4] Tohoku Univ, Grad Sch Informat Sci, Res Ctr Pure & Appl Math, Sendai, Miyagi 9808579, Japan
GLOBAL WELL-POSEDNESS;
SCHRODINGER-OPERATORS;
DYNAMICS;
D O I:
10.1093/imrn/rnac137
中图分类号:
O1 [数学];
学科分类号:
0701 ;
070101 ;
摘要:
In this paper we consider the two-dimensional stochastic Gross-Pitaevskii equation, which is a model to describe Bose-Einstein condensation at positive temperature. The equation is a complex Ginzburg-Landau equation with a harmonic potential and an additive space-time white noise. We study the global well posedness of the model using an inhomogeneous Wick renormalization due to the potential and prove the existence of an invariant measure.
机构:
Univ Negeri Jakarta, Fac Math & Nat Sci, Dept Phys, Jl Pemuda Rawamangun 13220, IndonesiaUniv Negeri Jakarta, Fac Math & Nat Sci, Dept Phys, Jl Pemuda Rawamangun 13220, Indonesia
Prayitno, T. B.
CONFERENCE OF THEORETICAL PHYSICS AND NONLINEAR PHENOMENA (CTPNP) 2014 - FROM UNIVERSE TO STRING'S SCALE,
2014,
539