Kinematic Analysis of Human Gait in Healthy Young Adults Using IMU Sensors: Exploring Relevant Machine Learning Features for Clinical Applications

被引:5
|
作者
Marimon, Xavier [1 ,2 ,3 ]
Mengual, Itziar [1 ]
Lopez-de-Celis, Carlos [4 ,5 ]
Portela, Alejandro [1 ]
Rodriguez-Sanz, Jacobo [4 ]
Herraez, Iria Andrea [1 ]
Perez-Bellmunt, Albert [4 ]
机构
[1] Univ Int Catalunya UIC, Bioengn Inst Technol, Barcelona 08195, Spain
[2] Univ Politecn Catalunya UPC BarcelonaTECH, Automat Control Dept, Barcelona 08034, Spain
[3] Inst Recerca St Joan de Deu IRSJD, Barcelona 08950, Spain
[4] Univ Int Catalunya UIC, ACTIUM Res Grp, Barcelona 08195, Spain
[5] Inst Univ Invest Atencio Primaria IDIAP Jordi Gol, Barcelona 08007, Spain
来源
BIOENGINEERING-BASEL | 2024年 / 11卷 / 02期
关键词
gait; walking; gait analysis; artificial intelligence; machine learning; falls; orthesis;
D O I
10.3390/bioengineering11020105
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Background: Gait is the manner or style of walking, involving motor control and coordination to adapt to the surrounding environment. Knowing the kinesthetic markers of normal gait is essential for the diagnosis of certain pathologies or the generation of intelligent ortho-prostheses for the treatment or prevention of gait disorders. The aim of the present study was to identify the key features of normal human gait using inertial unit (IMU) recordings in a walking test. Methods: Gait analysis was conducted on 32 healthy participants (age range 19-29 years) at speeds of 2 km/h and 4 km/h using a treadmill. Dynamic data were obtained using a microcontroller (Arduino Nano 33 BLE Sense Rev2) with IMU sensors (BMI270). The collected data were processed and analyzed using a custom script (MATLAB 2022b), including the labeling of the four relevant gait phases and events (Stance, Toe-Off, Swing, and Heel Strike), computation of statistical features (64 features), and application of machine learning techniques for classification (8 classifiers). Results: Spider plot analysis revealed significant differences in the four events created by the most relevant statistical features. Among the different classifiers tested, the Support Vector Machine (SVM) model using a Cubic kernel achieved an accuracy rate of 92.4% when differentiating between gait events using the computed statistical features. Conclusions: This study identifies the optimal features of acceleration and gyroscope data during normal gait. The findings suggest potential applications for injury prevention and performance optimization in individuals engaged in activities involving normal gait. The creation of spider plots is proposed to obtain a personalised fingerprint of each patient's gait fingerprint that could be used as a diagnostic tool. A deviation from a normal gait pattern can be used to identify human gait disorders. Moving forward, this information has potential for use in clinical applications in the diagnosis of gait-related disorders and developing novel orthoses and prosthetics to prevent falls and ankle sprains.
引用
收藏
页数:18
相关论文
共 43 条
  • [31] Recent advances of machine learning applications in human gut microbiota study: from observational analysis toward causal inference and clinical intervention
    Salim, Felix
    Mizutani, Sayaka
    Zolfo, Moreno
    Yamada, Takuji
    CURRENT OPINION IN BIOTECHNOLOGY, 2023, 79
  • [32] Does Digital Detox Work? Exploring the Role of Digital Detox Applications for Problematic Smartphone Use and Well-Being of Young Adults Using Multigroup Analysis
    Schmuck, Desiree
    CYBERPSYCHOLOGY BEHAVIOR AND SOCIAL NETWORKING, 2020, 23 (08) : 526 - 532
  • [33] PhenoScore quantifies phenotypic variation for rare genetic diseases by combining facial analysis with other clinical features using a machine-learning framework
    Alexander J. M. Dingemans
    Max Hinne
    Kim M. G. Truijen
    Lia Goltstein
    Jeroen van Reeuwijk
    Nicole de Leeuw
    Janneke Schuurs-Hoeijmakers
    Rolph Pfundt
    Illja J. Diets
    Joery den Hoed
    Elke de Boer
    Jet Coenen-van der Spek
    Sandra Jansen
    Bregje W. van Bon
    Noraly Jonis
    Charlotte W. Ockeloen
    Anneke T. Vulto-van Silfhout
    Tjitske Kleefstra
    David A. Koolen
    Philippe M. Campeau
    Elizabeth E. Palmer
    Hilde Van Esch
    Gholson J. Lyon
    Fowzan S. Alkuraya
    Anita Rauch
    Ronit Marom
    Diana Baralle
    Pleuntje J. van der Sluijs
    Gijs W. E. Santen
    R. Frank Kooy
    Marcel A. J. van Gerven
    Lisenka E. L. M. Vissers
    Bert B. A. de Vries
    Nature Genetics, 2023, 55 : 1598 - 1607
  • [34] PhenoScore quantifies phenotypic variation for rare genetic diseases by combining facial analysis with other clinical features using a machine-learning framework
    Dingemans, Alexander J. M.
    Hinne, Max
    Truijen, Kim M. G.
    Goltstein, Lia
    van Reeuwijk, Jeroen
    de Leeuw, Nicole
    Schuurs-Hoeijmakers, Janneke
    Pfundt, Rolph
    Diets, Illja J.
    den Hoed, Joery
    de Boer, Elke
    van der Spek, Jet
    Jansen, Sandra
    van Bon, Bregje W.
    Jonis, Noraly
    Ockeloen, Charlotte W.
    Vulto-van Silfhout, Anneke T.
    Kleefstra, Tjitske
    Koolen, David A.
    Campeau, Philippe M.
    Palmer, Elizabeth E.
    Van Esch, Hilde
    Lyon, Gholson J.
    Alkuraya, Fowzan S.
    Rauch, Anita
    Marom, Ronit
    Baralle, Diana
    van der Sluijs, Pleuntje J.
    Santen, Gijs W. E.
    Kooy, R. Frank
    van Gerven, Marcel A. J.
    Vissers, Lisenka E. L. M.
    de Vries, Bert B. A.
    NATURE GENETICS, 2023, 55 (09) : 1598 - +
  • [35] Exploring Correlations between PSA Levels and PSMA-PET Images in Recurrent Prostate Cancer using Machine Learning, Tensor Radiomics and Deep Features Analysis
    Toosi, A.
    Harsini, S.
    Abdollahi, H.
    Benard, F.
    Uribe, C. F.
    Rahmim, A.
    EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING, 2023, 50 (SUPPL 1) : S43 - S43
  • [36] Evaluation of a Machine Learning Model Based on Pretreatment Symptoms and Electroencephalographic Features to Predict Outcomes of Antidepressant Treatment in Adults With Depression A Prespecified Secondary Analysis of a Randomized Clinical Trial
    Rajpurkar, Pranav
    Yang, Jingbo
    Dass, Nathan
    Vale, Vinjai
    Keller, Arielle S.
    Irvin, Jeremy
    Taylor, Zachary
    Basu, Sanjay
    Ng, Andrew
    Williams, Leanne M.
    JAMA NETWORK OPEN, 2020, 3 (06)
  • [37] Strategies to Measure Soil Moisture Using Traditional Methods, Automated Sensors, Remote Sensing, and Machine Learning Techniques: Review, Bibliometric Analysis, Applications, Research Findings, and Future Directions
    Singh, Abhilash
    Gaurav, Kumar
    Sonkar, Gaurav Kailash
    Lee, Cheng-Chi
    IEEE ACCESS, 2023, 11 : 13605 - 13635
  • [38] 2D-3D Facial Image Analysis for Identification of Facial Features Using Machine Learning Algorithms With Hyper-Parameter Optimization for Forensics Applications
    Sanil, Gangothri
    Prakash, Krishna
    Prabhu, Srikanth
    Nayak, Vinod C.
    Sengupta, Saptarshi
    IEEE ACCESS, 2023, 11 : 82521 - 82538
  • [39] Using machine learning to explore core risk factors associated with the risk of eating disorders among non-clinical young women in China: A decision-tree classification analysis
    Yaoxiang Ren
    Chaoyi Lu
    Han Yang
    Qianyue Ma
    Wesley R. Barnhart
    Jianjun Zhou
    Jinbo He
    Journal of Eating Disorders, 10
  • [40] Using machine learning to explore core risk factors associated with the risk of eating disorders among non-clinical young women in China: A decision-tree classification analysis
    Ren, Yaoxiang
    Lu, Chaoyi
    Yang, Han
    Ma, Qianyue
    Barnhart, Wesley R.
    Zhou, Jianjun
    He, Jinbo
    JOURNAL OF EATING DISORDERS, 2022, 10 (01)