Robust estimation and bias-corrected empirical likelihood in generalized linear models with right censored data

被引:0
|
作者
Xue, Liugen [1 ,2 ]
Xie, Junshan [1 ]
Yang, Xiaohui [1 ]
机构
[1] Henan Univ, Sch Math & Stat, Kaifeng, Peoples R China
[2] Henan Univ, Sch Math & Stat, Kaifeng 475004, Henan, Peoples R China
基金
中国国家自然科学基金;
关键词
Generalized linear model; right censored data; robust estimation; empirical likelihood; regression parameter; REGRESSION-ANALYSIS;
D O I
10.1080/02664763.2023.2277117
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper, we study the robust estimation and empirical likelihood for the regression parameter in generalized linear models with right censored data. A robust estimating equation is proposed to estimate the regression parameter, and the resulting estimator has consistent and asymptotic normality. A bias-corrected empirical log-likelihood ratio statistic of the regression parameter is constructed, and it is shown that the statistic converges weakly to a standard $ \chi <^>2 $ chi 2 distribution. The result can be directly used to construct the confidence region of regression parameter. We use the bias correction method to directly calibrate the empirical log-likelihood ratio, which does not need to be multiplied by an adjustment factor. We also propose a method for selecting the tuning parameters in the loss function. Simulation studies show that the estimator of the regression parameter is robust and the bias-corrected empirical likelihood is better than the normal approximation method. An example of a real dataset from Alzheimer's disease studies shows that the proposed method can be applied in practical problems.
引用
收藏
页码:2197 / 2213
页数:17
相关论文
共 50 条
  • [31] Bias-corrected maximum semiparametric likelihood estimation under logistic regression models based on case-control data
    Zhang, B
    [J]. JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2006, 136 (01) : 108 - 124
  • [32] Empirical likelihood for right censored data with covariables
    ShuYuan He
    Wei Liang
    [J]. Science China Mathematics, 2014, 57 : 1275 - 1286
  • [33] Empirical Likelihood for Right Censored Lifetime Data
    He, Shuyuan
    Liang, Wei
    Shen, Junshan
    Yang, Grace
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2016, 111 (514) : 646 - 655
  • [34] Bias-corrected maximum likelihood estimation of the parameters of the complex Bingham distribution
    Dore, Luiz H. G.
    Amaral, Getulio J. A.
    Cruz, Jorge T. M.
    Wood, Andrew T. A.
    [J]. BRAZILIAN JOURNAL OF PROBABILITY AND STATISTICS, 2016, 30 (03) : 385 - 400
  • [35] Empirical likelihood for generalized linear models with longitudinal data
    Li, Daoji
    Pan, Jianxin
    [J]. JOURNAL OF MULTIVARIATE ANALYSIS, 2013, 114 : 63 - 73
  • [36] Empirical Likelihood for Generalized Linear Models with Longitudinal Data
    Changming Yin
    Mingyao Ai
    Xia Chen
    Xiangshun Kong
    [J]. Journal of Systems Science and Complexity, 2023, 36 : 2100 - 2124
  • [37] Empirical likelihood for right censored data with covariables
    He ShuYuan
    Liang Wei
    [J]. SCIENCE CHINA-MATHEMATICS, 2014, 57 (06) : 1275 - 1286
  • [38] Empirical Likelihood for Generalized Linear Models with Longitudinal Data
    Yin, Changming
    Ai, Mingyao
    Chen, Xia
    Kong, Xiangshun
    [J]. JOURNAL OF SYSTEMS SCIENCE & COMPLEXITY, 2023, 36 (05) : 2100 - 2124
  • [39] Empirical Likelihood for Generalized Linear Models with Longitudinal Data
    YIN Changming
    AI Mingyao
    CHEN Xia
    KONG Xiangshun
    [J]. Journal of Systems Science & Complexity, 2023, 36 (05) : 2100 - 2124
  • [40] Empirical likelihood for right censored data with covariables
    HE ShuYuan
    LIANG Wei
    [J]. Science China Mathematics, 2014, 57 (06) : 1275 - 1286