Numerical predictions of intralaminar and interlaminar damage in thin composite shells subjected to impact loads

被引:7
|
作者
Ferreira, L. M. [1 ,2 ]
Coelho, C. A. C. P. [3 ]
Reis, P. N. B. [4 ]
机构
[1] Univ Seville, Escuela Tecn Super Ingn, Grp Elast & Resistencia Mat, Camino Descubrimientos S-N, Seville 41092, Spain
[2] Univ Seville, Escuela Politecn Super, C Virgen Afr 7, Seville 41011, Spain
[3] Inst Politecn Tomar, Unidade Departamental Engn, Escola Super Tecnol Abrantes, Rua 17 Agosto 1808 S-N Abrantes, P-2200370 Abrantes, Portugal
[4] Univ Coimbra, Dept Mech Engn, CEMMPRE, ARISE, P-3030194 Coimbra, Portugal
关键词
Finite element method (FEM); Continuum damage mechanics (CDM); Cohesive behaviour; Low-velocity impact; Woven-fabric composites; Composite shells; LOW-VELOCITY IMPACT; FINITE-ELEMENT-ANALYSIS; DELAMINATION ANALYSIS; SIMULATION; BEHAVIOR; HOMOGENIZATION; MECHANICS; FAILURE;
D O I
10.1016/j.tws.2023.111148
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
This paper investigates the impact dynamics of thin semicylindrical woven composite laminate shells, with a particular focus on understanding the influence of thickness. Utilizing the finite element (FE) method, the study evaluates both intralaminar and interlaminar damage associated with the impact response. The findings show that the implementation of the explicit FE method, along with a continuum damage mechanics model, for the intralaminar damage, and a surface-based cohesive model, for the interlaminar damage, may be used to correctly predict the load histories, as well as the maximum impact force, maximum displacement, contact time and impact bending stiffness (IBS). The numerical predictions reproduce well the linear response of the maximum impact force and maximum displacement to the thickness variation, as well as the 2nd order polynomial curve of the IBS, with errors ranging from 2.7% to 15.9%. Moreover, the damage areas and the effect of thickness on the damage severity were accurately replicated. These results' validation enables the prediction of the energy histories and the ensuing energy dissipation forms. According to the findings, the intralaminar damage is around 5 times more significant than the other energy dissipation forms. The accuracy of the simulation creates the possibility for more impact investigations using a similar numerical approach, reducing the expenditures of experimental testing.
引用
收藏
页数:11
相关论文
共 50 条