Comprehensive performance study on reflux solar methanol steam reforming reactor for hydrogen production

被引:10
|
作者
Zhang, Tong [1 ]
Tang, Xin-Yuan [1 ]
Yang, Wei-Wei [1 ]
Ma, Xu [1 ]
机构
[1] Xi An Jiao Tong Univ, Sch Energy & Power Engn, Key Lab Thermofluid Sci & Engn, MOE, Xian, Peoples R China
基金
中国国家自然科学基金;
关键词
Parabolic trough concentrator; Reflux structure; Methanol steam reform; Hydrogen production; RECEIVER-REACTORS; FLUX DISTRIBUTION; TEMPERATURE; WATER; CU/ZNO/AL2O3; CATALYSTS; COLLECTOR; DESIGN; ENERGY; SHAPE;
D O I
10.1016/j.ijhydene.2022.10.002
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In this paper, a reflux solar methanol steam reforming reactor (SMSRR) system is proposed for efficient solar thermal hydrogen produced. A two-dimensional (2D) axisymmetric model is used to compare the comprehensive performance of three different SMSRRs: no reflux tube (SMSRR0), flow from the inside of the reflux tube to the outside (SMSRR1) and flow from the outside of the reflux tube to the inside (SMSRR2). The results showed that the reflux SMSRR uses the heat of the fluid at the outlet to further provide the reaction heat, which greatly reduces the outlet temperature, thereby improving the overall performance of the SMORE. By optimizing the diameter of the reflux tube and the operating conditions, the energy conversion rate can be increased by 19.5%, and the temperature distribution coefficients can be increased by 1.89% while the methanol conversion is increased by 6.43%, and the hydrogen yield is increased by 5.96%. (c) 2022 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:879 / 893
页数:15
相关论文
共 50 条
  • [41] Trapezoidal cavity for high reforming temperature performance of auto-thermal methanol steam reforming micro-reactor for hydrogen production
    Zheng, Tianqing
    Zhou, Wei
    Chu, Xuyang
    Lian, Yunsong
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2022, 47 (08) : 5053 - 5063
  • [42] Hydrogen Production Performance of a Self-Heating Methanol Steam Reforming Microreactor
    Liu, Shuai
    Du, Pengzhu
    Jia, Hekun
    Hua, Lun
    Dong, Fei
    Hao, Liutao
    JOURNAL OF ENERGY ENGINEERING, 2025, 151 (02)
  • [43] Hydrogen Production by Methanol Steam Reforming Using Microreactor
    Kawamura, Yoshihiro
    Ogura, Naotsugu
    Igarashi, Akira
    JOURNAL OF THE JAPAN PETROLEUM INSTITUTE, 2013, 56 (05) : 288 - 297
  • [44] Nanosized catalysts for the production of hydrogen by methanol steam reforming
    Valdes-Solis, T.
    Marban, G.
    Fuertes, A. B.
    CATALYSIS TODAY, 2006, 116 (03) : 354 - 360
  • [45] Thermochemical Module for Hydrogen Production by Steam Reforming of Methanol
    A. V. Makunin
    M. S. Granovskii
    E. B. Ivanov
    V. M. Fomin
    Chemical and Petroleum Engineering, 2003, 39 : 704 - 710
  • [46] Hydrogen production process based on methanol steam reforming
    Hao, Shuren
    Li, Yanhao
    Cheng, Yuchun
    Wang, Zhiliang
    Jingxi Huagong/Fine Chemicals, 1998, 15 (05): : 52 - 54
  • [47] Simulation of methanol steam reforming process for the production of hydrogen
    Qureshi, Fazil
    Ahmad, Faizan
    Idrees, Mohammad
    Khan, Ali Asif
    Zaidi, Sadaf
    INDIAN CHEMICAL ENGINEER, 2021, 63 (01) : 99 - 116
  • [48] Optimization analysis of methanol steam reforming for hydrogen production
    Wang, Feng
    Zheng, Shi-Wei
    Zhang, Ding-Wen
    Qi, Bo
    Zhang, Xiang-Yu
    Chongqing Daxue Xuebao/Journal of Chongqing University, 2009, 32 (12): : 1410 - 1413
  • [49] Thermochemical module for hydrogen production by steam reforming of methanol
    Makunin, AV
    Granovskii, MS
    Ivanov, EB
    Fomin, VM
    CHEMICAL AND PETROLEUM ENGINEERING, 2003, 39 (11-12) : 704 - 710
  • [50] Thermodynamic evaluation of methanol steam reforming for hydrogen production
    Faungnawakij, Kajornsak
    Kikuchi, Ryuji
    Eguchi, Koichi
    JOURNAL OF POWER SOURCES, 2006, 161 (01) : 87 - 94