Unassisted Photoelectrochemical H2O2 Production with In Situ Glycerol Valorization Using α-Fe2O3

被引:8
|
作者
Kim, Sarang [1 ]
Oh, Dongrak [1 ]
Jang, Ji-Wook [1 ,2 ,3 ]
机构
[1] Ulsan Natl Inst Sci & Technol UNIST, Sch Energy & Chem Engn, Ulsan 44919, South Korea
[2] UNIST, Grad Sch Carbon Neutral, Ulsan 44919, South Korea
[3] UNIST, Emergent Hydrogen Technol R&D Ctr, Ulsan 44919, South Korea
基金
新加坡国家研究基金会;
关键词
hematite; photoelectrochemical water splitting; glycerol valorization; oxidized carbon nanotubes; hydrogen peroxide production; HYDROGEN-PEROXIDE; HEMATITE PHOTOANODES; WATER; OXIDATION; SURFACE;
D O I
10.1021/acs.nanolett.3c05136
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Photoelectrochemical (PEC) H2O2 production via two-electron O-2 reduction is promising for H2O2 production without emitting CO2. For PEC H2O2 production, alpha-Fe2O3 is an ideal semiconductor owing to its earth abundance, superior stability in water, and an appropriate band gap for efficient solar light utilization. Moreover, its conduction band is suitable for O-2 reduction to produce H2O2. However, a significant overpotential for water oxidation is required due to the poor surface properties of alpha-Fe2O3. Thus, unassisted solar H2O2 production is not yet possible. Herein, we demonstrate unassisted PEC H2O2 production using alpha-Fe2O3 for the first time by applying glycerol oxidation, which requires less bias compared with water oxidation. We obtain maximum Faradaic efficiencies of 96.89 +/- 0.6% and 100% for glycerol oxidation and H2O2 production, respectively, with high stability for 25 h. Our results indicate that unassisted and stable PEC H2O2 production is feasible with in situ glycerol valorization using the alpha-Fe2O3 photoanode.
引用
收藏
页码:5146 / 5153
页数:8
相关论文
共 50 条
  • [21] Degradation of melatonin by UV, UV/H2O2, Fe2+/H2O2 and UV/Fe2+/H2O2 processes
    Xu, Xiang-Rong
    Li, Xiao-Yan
    Li, Xiang-Zhong
    Li, Hua-Bin
    SEPARATION AND PURIFICATION TECHNOLOGY, 2009, 68 (02) : 261 - 266
  • [22] Oxidation of reactive dye waste water with H2O2/Fe2+ and H2O2/Fe3+
    王滨松
    黄君礼
    张杰
    哈尔滨商业大学学报(自然科学版), 2005, (06) : 697 - 701
  • [23] Vis and UV photocatalytic detoxification methods (using TiO2, TiO2/H2O2, TiO2/O3, TiO2/S2O82-, O3, H2O2,S2O82-, Fe3+/H2O2 and Fe 3+/H2O2/C2O42-) for dyes treatment
    Domínguez, JR
    Beltrán, J
    Rodríguez, O
    CATALYSIS TODAY, 2005, 101 (3-4) : 389 - 395
  • [24] In situ XRD study of the phase transition of nanocrystalline maghemite (γ-Fe2O3) to hematite (α-Fe2O3)
    Schimanke, G
    Martin, M
    SOLID STATE IONICS, 2000, 136 : 1235 - 1240
  • [25] Hydrothermal and electrochemical synthesis of Fe2O3 and ZnFe2O4/Fe2O3 photoanodes for photoelectrochemical applications: An experimental and theoretical study
    Wannapop, Surangkana
    Kansaard, Thitirat
    Singha, Thareerat
    Sudyoadsuk, Taweesak
    Smith, Siwaporn Meejoo
    Somdee, Asanee
    INORGANIC CHEMISTRY COMMUNICATIONS, 2024, 168
  • [26] In2O3 anchored Fe2O3 nanorod arrays for enhanced photoelectrochemical performance
    Wu, Liangpeng
    Ma, Shexia
    Li, Juan
    Li, Xinjun
    THIN SOLID FILMS, 2021, 724 (724)
  • [27] α-Fe2O3、γ-Fe2O3与H2SO4反应的比较
    颜齐圣
    知识文库, 2020, (04) : 155 - 156
  • [28] Ni: Fe2O3, Mg: Fe2O3 and Fe2O3 thin films gas sensor application
    Saritas, Sevda
    Kundakci, Mutlu
    Coban, Omer
    Tuzemen, Sebahattin
    Yildirim, Muhammet
    PHYSICA B-CONDENSED MATTER, 2018, 541 : 14 - 18
  • [29] One-pot synthesis of crossed Fe2O3 nanosheets in-situ grown on Ni foam and the application for H2O2 electrooxidation
    Song, Congying
    Wang, Guiling
    Zhang, Feifan
    Zhu, Kai
    Cheng, Kui
    Ye, Ke
    Yan, Jun
    Cao, Dianxue
    Yan, Peng
    JOURNAL OF ALLOYS AND COMPOUNDS, 2020, 817
  • [30] Fe2O3/macroporous resin nanocomposites. High efficiency catalysts for hydroxylation of phenol with H2O2
    Dayang Wang
    Zhiqiang Liu
    Fengqi Liu
    Xingtong Zhang
    Yaan Cao
    Jiangfeng Yu
    Tonghao Wu
    Yubai Bai
    Tiejin Li
    Xinyi Tang
    Reaction Kinetics and Catalysis Letters, 1998, 65 : 233 - 238