Unassisted Photoelectrochemical H2O2 Production with In Situ Glycerol Valorization Using α-Fe2O3

被引:8
|
作者
Kim, Sarang [1 ]
Oh, Dongrak [1 ]
Jang, Ji-Wook [1 ,2 ,3 ]
机构
[1] Ulsan Natl Inst Sci & Technol UNIST, Sch Energy & Chem Engn, Ulsan 44919, South Korea
[2] UNIST, Grad Sch Carbon Neutral, Ulsan 44919, South Korea
[3] UNIST, Emergent Hydrogen Technol R&D Ctr, Ulsan 44919, South Korea
基金
新加坡国家研究基金会;
关键词
hematite; photoelectrochemical water splitting; glycerol valorization; oxidized carbon nanotubes; hydrogen peroxide production; HYDROGEN-PEROXIDE; HEMATITE PHOTOANODES; WATER; OXIDATION; SURFACE;
D O I
10.1021/acs.nanolett.3c05136
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Photoelectrochemical (PEC) H2O2 production via two-electron O-2 reduction is promising for H2O2 production without emitting CO2. For PEC H2O2 production, alpha-Fe2O3 is an ideal semiconductor owing to its earth abundance, superior stability in water, and an appropriate band gap for efficient solar light utilization. Moreover, its conduction band is suitable for O-2 reduction to produce H2O2. However, a significant overpotential for water oxidation is required due to the poor surface properties of alpha-Fe2O3. Thus, unassisted solar H2O2 production is not yet possible. Herein, we demonstrate unassisted PEC H2O2 production using alpha-Fe2O3 for the first time by applying glycerol oxidation, which requires less bias compared with water oxidation. We obtain maximum Faradaic efficiencies of 96.89 +/- 0.6% and 100% for glycerol oxidation and H2O2 production, respectively, with high stability for 25 h. Our results indicate that unassisted and stable PEC H2O2 production is feasible with in situ glycerol valorization using the alpha-Fe2O3 photoanode.
引用
收藏
页码:5146 / 5153
页数:8
相关论文
共 50 条
  • [1] Photoelectrochemical generation of H2O2 using hematite (α-Fe2O3) and gas diffusion electrode (GDE)
    Imrich, T.
    Nakata, T.
    Ohno, T.
    Krysa, J.
    CATALYSIS TODAY, 2025, 450
  • [2] Photoelectrochemical hydrogen production using nanostructured α-Fe2O3 electrodes
    Glasscock, Julie A.
    Barnes, Piers R. F.
    Plumb, Ian C.
    Bendavid, Avi
    Martin, Phil J.
    SOLAR HYDROGEN AND NANOTECHNOLOGY, 2006, 6340
  • [3] PHOTOELECTROCHEMICAL HYDROGEN PRODUCTION USING TiO2 and Fe2O3 PHOTOANODES
    Krysa, J.
    Zlamal, M.
    Kment, S.
    Hubicka, Z.
    PROCEEDINGS OF THE 4TH INTERNATIONAL CONFERENCE ON CHEMICAL TECHNOLOGY, 1ST EDITION, 2016, : 171 - 175
  • [4] Fe2O3/CNT催化湿法H2O2氧化苯酚
    赵松林
    梁华定
    琚晓敏
    应用化学, 2010, 27 (02) : 197 - 200
  • [5] In situ electrodeposition of mesoporous aligned α-Fe2O3 nanoflakes for highly sensitive nonenzymatic H2O2 sensor
    Cai, Jiajia
    Ding, Shilei
    Chen, Guang
    Sun, Yunlan
    Xie, Qian
    APPLIED SURFACE SCIENCE, 2018, 456 : 302 - 306
  • [6] Bias-Free Photoelectrochemical H2O2 Production and Its In Situ Applications
    Ko, Myohwa
    Lim, June Sung
    Jang, Ji-Wook
    Joo, Sang Hoon
    ACS ES&T ENGINEERING, 2023, 3 (07): : 910 - 922
  • [7] Synthesis of Ag–Fe2O3–RGO nanocomposites for the electrocatalytic reduction of H2O2
    Ning Zhang
    Jianbin Zheng
    Journal of Materials Science: Materials in Electronics, 2017, 28 : 11209 - 11216
  • [8] H2O2/Fe0、H2O2/Fe2+、H2O2/Fe3+3种体系处理印染废水
    姚兴
    颜幼平
    冯霞
    环境工程学报, 2015, 9 (09) : 4398 - 4402
  • [9] H2O2/O-3, H2O2/UV AND H2O2/FE2+ PROCESSES FOR THE OXIDATION OF HAZARDOUS WASTES
    SCHULTE, P
    BAYER, A
    KUHN, F
    LUY, T
    VOLKMER, M
    OZONE-SCIENCE & ENGINEERING, 1995, 17 (02) : 119 - 134
  • [10] Facile synthesis of α-FeOOH/γ-Fe2O3 by a pH gradient method and the role of γ-Fe2O3 in H2O2 activation under visible light irradiation
    Ma, Yuan
    Wang, Beibei
    Wang, Qing
    Xing, Shengtao
    CHEMICAL ENGINEERING JOURNAL, 2018, 354 : 75 - 84