Delivery of Probiotics with Cellulose-Based Films and Their Food Applications

被引:3
|
作者
Yang, Ying [1 ]
Zhang, Junze [1 ]
Li, Chengcheng [1 ]
机构
[1] Nanjing Forestry Univ, Int Innovat Ctr Forest Chem & Mat, Jiangsu Coinnovat Ctr Efficient Proc & Utilizat Fo, Nanjing 210037, Peoples R China
关键词
cellulose; probiotic; encapsulation; food application; CARBOXYMETHYL CELLULOSE; BACTERIAL CELLULOSE; NANOCOMPOSITE FILM; ESCHERICHIA-COLI; NANOFIBER; MICROCAPSULES; SODIUM; ENCAPSULATION; DERIVATIVES; PH;
D O I
10.3390/polym16060794
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
Probiotics have attracted great interest from many researchers due to their beneficial effects. Encapsulation of probiotics into biopolymer matrices has led to the development of active food packaging materials as an alternative to traditional ones for controlling food-borne microorganisms, extending food shelf life, improving food safety, and achieving health-promoting effects. The challenges of low survival rates during processing, storage, and delivery to the gut and low intestinal colonization, storage stability, and controllability have greatly limited the use of probiotics in practical food-preservation applications. The encapsulation of probiotics with a protective matrix can increase their resistance to a harsh environment and improve their survival rates, making probiotics appropriate in the food packaging field. Cellulose has attracted extensive attention in food packaging due to its excellent biocompatibility, biodegradability, environmental friendliness, renewability, and excellent mechanical strength. In this review, we provide a brief overview of the main types of cellulose used for probiotic encapsulation, as well as the current advances in different probiotic encapsulating strategies with cellulose, grafted cellulose, and cellulose-derived materials, including electrospinning, cross-linking, in-situ growth, casting strategies, and their combinations. The effect of cellulose encapsulation on the survival rate of probiotics and the patented encapsulated probiotics are also introduced. In addition, applications of cellulose-encapsulated probiotics in the food industry are also briefly discussed. Finally, the future trends toward developing encapsulated probiotics with improved health benefits and advanced features with cellulose-based materials are discussed.
引用
收藏
页数:21
相关论文
共 50 条
  • [21] Fabrication and applications of cellulose-based nanogenerators
    Meng Zhang
    Haishun Du
    Kun Liu
    Shuangxi Nie
    Ting Xu
    Xinyu Zhang
    Chuanling Si
    Advanced Composites and Hybrid Materials, 2021, 4 : 865 - 884
  • [22] Fabrication and applications of cellulose-based nanogenerators
    Zhang, Meng
    Du, Haishun
    Liu, Kun
    Nie, Shuangxi
    Xu, Ting
    Zhang, Xinyu
    Si, Chuanling
    ADVANCED COMPOSITES AND HYBRID MATERIALS, 2021, 4 (04) : 865 - 884
  • [23] Cellulose-based Conductive Gels and Their Applications
    Jia, Han
    Michinobu, Tsuyoshi
    CHEMNANOMAT, 2023, 9 (05)
  • [24] Factors influencing the adhesive behavior of carboxymethyl cellulose-based hydrogel for food applications
    Dong, Shiliang
    Feng, Sirui
    Liu, Feng
    Li, Ran
    Li, Wenhua
    Liu, Fengfeng
    Shi, Gang
    Chen, Lin
    Zhang, Yue
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2021, 179 : 398 - 406
  • [25] Preparation and characterization of carboxymethyl cellulose-based composite films reinforced by cellulose nanocrystals derived from pea hull waste for food packaging applications
    Li, Hui
    Shi, Hongbo
    He, Yunqing
    Fei, Xiang
    Peng, Lincai
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2020, 164 : 4104 - 4112
  • [26] Citric Acid Crosslinked Carboxymethyl Cellulose-based Composite Hydrogel Films for Drug Delivery
    Mali, K. K.
    Dhawale, S. C.
    Dias, R. J.
    Dhane, N. S.
    Ghorpade, V. S.
    INDIAN JOURNAL OF PHARMACEUTICAL SCIENCES, 2018, 80 (04) : 657 - 667
  • [27] Recent Advances in Functional Cellulose-based Films with Antimicrobial and Antioxidant Properties for Food Packaging
    Shen, Yihan
    Seidi, Farzad
    Ahmad, Mehraj
    Liu, Yuqian
    Saeb, Mohammad Reza
    Akbari, Ali
    Xiao, Huining
    JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY, 2023, 71 (44) : 16469 - 16487
  • [28] Cellulose-based edible films for probiotic entrapment
    Singh, Poonam
    Magalhaes, Solange
    Alves, Luis
    Antunes, Filipe
    Miguel, Maria
    Lindman, Bjorn
    Medronho, Bruno
    FOOD HYDROCOLLOIDS, 2019, 88 : 68 - 74
  • [29] Continuous Production of Resolidified Cellulose-Based Films
    Jiang, Yiwei
    Moradian, Mohammadhadi
    Nutu, Oana M.
    Ojagh, Seyed Mohammad Amin
    van de Ven, Theo G. M.
    Industrial and Engineering Chemistry Research, 2024, 63 (45): : 19537 - 19545
  • [30] Biodegradable Cellulose-based Hydrogels: Design and Applications
    Sannino, Alessandro
    Demitri, Christian
    Madaghiele, Marta
    MATERIALS, 2009, 2 (02) : 353 - 373