Numerical investigation of suppressing thermal runaway propagation in a lithium-ion battery pack using thermal insulators

被引:17
|
作者
Gong, Junhui [1 ]
Liu, Bo [1 ]
Lian, Haochen [1 ]
Liu, Jingyi [1 ]
Fu, Hui [1 ]
Miao, Yuxuan [1 ]
Liu, Jialong [1 ,2 ]
机构
[1] Nanjing Tech Univ, Coll Safety Sci & Engn, Nanjing 210009, Jiangsu, Peoples R China
[2] Nanjing Tech Univ, 30 Puzhu South Rd, Nanjing 210009, Jiangsu, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
Lithium-ion battery pack; Thermal runaway propagation suppression; Thermal insulation boards; Numerical simulation; Temperature evolution; INTERNAL SHORT-CIRCUIT; MODEL; FIRE;
D O I
10.1016/j.psep.2023.06.092
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Thermal runaway propagation (TRP) in a lithium-ion battery pack is crucial to its safety concerning the potential hazards of fire or explosion. In current study, a TRP suppression method for a 4 x 4 battery pack using three insulation materials, silicate, ceramic and glass fiber boards, is numerically investigated. Reliability of the model is first verified by experimental temperature of a single battery during TR. Then, three sets of TRP scenarios initiated by external heating are studied to reveal the effects of insulation type, thickness (0.5-4 mm) and layout. The results show that thermal conductivity of insulation impacts its performance more greatly than thickness, and glass fiber outperforms silicate and ceramic fibers in preventing TRP. Bidirectional layout (BL) of insulation boards performs better than unidirectional layout (UL). For UL, row-to-row TRP exists and the TRP process is accelerated compared with non-insulation case if insulation boards fail, implying UL can prevent TRP only if the row-to-row TRP is inhibited. While for BL, TRP is only observed for 0.5 mm silicate fiber boards, and the critical heating power (6.5 kWm  2) triggering TRP in battery pack is much lower. The outcomes may provide useful theoretical bases and suggestions for safety design and risk assessment of battery pack.
引用
收藏
页码:1063 / 1075
页数:13
相关论文
共 50 条
  • [41] Numerical investigation of thermal runaway behavior of lithium-ion batteries with different battery materials and heating conditions
    Kong, Depeng
    Wang, Gongquan
    Ping, Ping
    Wen, Jenifer
    APPLIED THERMAL ENGINEERING, 2021, 189
  • [42] An experimental analysis on thermal runaway and its propagation in Cell-to-Pack lithium-ion batteries
    Wang, Huaibin
    Xu, Hui
    Zhao, Zhenyang
    Wang, Qinzheng
    Jin, Changyong
    Li, Yanliang
    Sheng, Jun
    Li, Kuijie
    Du, Zhiming
    Xu, Chengshan
    Feng, Xuning
    APPLIED THERMAL ENGINEERING, 2022, 211
  • [43] A Thermal Investigation and Optimization of an Air-Cooled Lithium-Ion Battery Pack
    Peng, Xiongbin
    Cui, Xujian
    Liao, Xiangping
    Garg, Akhil
    ENERGIES, 2020, 13 (11)
  • [44] Impact of plate-deflected flame on thermal runaway propagation of lithium-ion battery
    Huang, Zonghou
    Li, Jia
    Sun, Jinhua
    Qin, Peng
    Wang, Qingsong
    Applied Thermal Engineering, 2024, 257
  • [45] Assessment of Thermal Runaway propagation in lithium-ion battery modules with different separator materials
    da Silva, Gabriel Menezes
    Lima, Thiago Jose
    da Silva, Dayvis Dias
    Henriques, Izabela Batista
    INTERNATIONAL JOURNAL OF THERMAL SCIENCES, 2024, 197
  • [46] Thermal runaway front in failure propagation of long-shape lithium-ion battery
    Zhang, Fangshu
    Feng, Xuning
    Xu, Chengshan
    Jiang, Fachao
    Ouyang, Minggao
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2022, 182
  • [47] An Experimental Study on the Thermal Runaway Propagation of Cycling Aged Lithium-Ion Battery Modules
    Han, Zhuxin
    Zhao, Luyao
    Zhao, Jiajun
    Xu, Guo
    Liu, Hong
    Chen, Mingyi
    FIRE-SWITZERLAND, 2024, 7 (04):
  • [48] Numerical Analysis of Heat Transfer Mechanism of Thermal Runaway Propagation for Cylindrical Lithium-ion Cells in Battery Module
    Tang, Zhiguo
    Song, Anqi
    Wang, Shoucheng
    Cheng, Jianping
    Tao, Changfa
    ENERGIES, 2020, 13 (04)
  • [49] Numerical analysis of kinetic mechanisms for battery thermal runaway prediction in lithium-ion batteries
    Garcia, Antonio
    Monsalve-Serrano, Javier
    Lago Sari, Rafael
    Fogue Robles, Alvaro
    INTERNATIONAL JOURNAL OF ENGINE RESEARCH, 2022, 23 (10) : 1691 - 1707
  • [50] Study on thermal runaway warning method of lithium-ion battery
    Ji, Changwei
    Zhang, Zhizu
    Wang, Bing
    Zhang, Shouqin
    Liu, Yangyi
    JOURNAL OF LOSS PREVENTION IN THE PROCESS INDUSTRIES, 2022, 78