Toward High Efficient Cu2ZnSn(Sx,Se1-x)4 Solar Cells: Break the Limitations of VOC and FF

被引:13
|
作者
Wang, Zuoyun [1 ,2 ]
Meng, Rutao [1 ,2 ]
Guo, Hongling [1 ,2 ]
Sun, Yali [1 ,2 ]
Liu, Yue [1 ,2 ]
Zhang, Huamei [1 ,2 ]
Cao, Zixiu [1 ,2 ]
Dong, Jiabin [1 ,2 ]
Xu, Xuejun [1 ,2 ]
Liang, Guangxing [3 ]
Lou, Licheng [4 ]
Li, Dongmei [4 ]
Meng, Qingbo [4 ]
Zhang, Yi [1 ,2 ]
机构
[1] Nankai Univ, Inst Photoelect Thin Film Devices & Technol, Tianjin 300350, Peoples R China
[2] Nankai Univ, Tianjin Key Lab Thin Film Devices & Technol, Tianjin 300350, Peoples R China
[3] Shenzhen Univ, Shenzhen Key Lab Adv Thin Films & Applicat, Shenzhen 518060, Peoples R China
[4] Chinese Acad Sci, Inst Phys, Beijing Natl Lab Condensed Matter Phys, Renewable Energy Lab, Beijing 100190, Peoples R China
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
ammonium sulfide; atomic layer deposited Al2O3; Cu2ZnSn(S; Se)(4) solar cells; defect passivation; CU2ZNSNS4;
D O I
10.1002/smll.202300634
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Increasing the fill factor (FF) and the open-circuit voltage (V-OC) simultaneously together with non-decreased short-circuit current density (J(SC)) are a challenge for highly efficient Cu2ZnSn(S,Se)(4) (CZTSSe) solar cells. Aimed at such target in CZTSSe solar cells, a synergistic strategy to tailor the recombination in the bulk and at the heterojunction interface has been developed, consisting of atomic-layer deposited aluminum oxide (ALD-Al2O3) and (NH4)(2)S treatment. With this strategy, deep-level Cu-Zn defects are converted into shallower V-Cu defects and improved crystallinity, while the surface of the absorber is optimized by removing Zn- and Sn-related impurities and incorporating S. Consequently, the defects responsible for recombination in the bulk and at the heterojunction interface are effectively passivated, thereby prolonging the minority carrier lifetime and increasing the depletion region width, which promote carrier collection and reduce charge loss. As a consequence, the V-OC deficit decreases from 0.607 to 0.547 V, and the average FF increases from 64.2% to 69.7%, especially, J(SC) does not decrease. Thus, the CZTSSe solar cell with the remarkable efficiency of 13.0% is fabricated. This study highlights the increased FF together with V-OC simultaneously to promote the efficiency of CZTSSe solar cells, which could also be applied to other photoelectronic devices.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] What is the band alignment of Cu2ZnSn(S,Se)4 solar cells?
    Crovetto, Andrea
    Hansen, Ole
    SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2017, 169 : 177 - 194
  • [22] Experimental and theoretical advances in Cu2ZnSn(S,Se)4 solar cells
    Rodriguez-Osorio, K.G.
    Andrade-Arvizu, J.A.
    Montoya De Los Santos, I.
    Morán-Lázaro, J.P.
    Ojeda-Martinez, M.
    Sánchez-Rodríguez, F.J.
    Sánchez-Hernández, L.A.
    Pérez, L.M.
    Laroze, D.
    Chandrasekar, P.
    Routray, S.
    Courel, Maykel
    Journal of Physics D: Applied Physics, 2025, 58 (13)
  • [23] Insight into the role of post-annealing in air for high efficient Cu2ZnSn(S,Se)4 solar cells
    Gao, Shoushuai
    Zhang, Yi
    Ao, Jianping
    Li, Xiuling
    Qiao, Shuang
    Wang, Ying
    Lin, Shuping
    Zhang, Zhaojing
    Wang, Dongxiao
    Zhou, Zhiqiang
    Sun, Guozhong
    Wang, Shufang
    Sun, Yun
    SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2018, 182 : 228 - 236
  • [24] 9.0% efficient Cu2ZnSn(S,Se)4 solar cells from selenized nanoparticle inks
    Miskin, Caleb K.
    Yang, Wei-Chang
    Hages, Charles J.
    Carter, Nathaniel J.
    Joglekar, Chinmay S.
    Stach, Eric A.
    Agrawal, Rakesh
    PROGRESS IN PHOTOVOLTAICS, 2015, 23 (05): : 654 - 659
  • [25] Deep Defects in Cu2ZnSn(S,Se)4 Solar Cells with Varying Se Content
    Levcenko, S.
    Just, J.
    Redinger, A.
    Larramona, G.
    Bourdais, S.
    Dennler, G.
    Jacob, A.
    Unold, T.
    PHYSICAL REVIEW APPLIED, 2016, 5 (02):
  • [26] Efficiency enhancement of Cu2ZnSn(S, Se)4 solar cells by addition a CuSe intermediate layer between Cu2ZnSn(S, Se)4 and Mo electrode
    Zhang, JiaYong
    Yao, Bin
    Ding, Zhanhui
    Li, Yongfeng
    Wang, Ting
    Wang, Chunkai
    Liu, Jia
    Ma, Ding
    Zhang, Dongxu
    JOURNAL OF ALLOYS AND COMPOUNDS, 2022, 911
  • [27] High flexible Cu2ZnSn(S,Se)4 solar cells by green solution-process
    Yan, Qiong
    Cheng, Shuying
    Li, Hongnan
    Yu, Xue
    Fu, Junjie
    Tian, Qingwen
    Jia, Hongjie
    Wu, Sixin
    SOLAR ENERGY, 2019, 177 : 508 - 516
  • [28] Optical designs that improve the efficiency of Cu2ZnSn(S,Se)4 solar cells
    Winkler, Mark T.
    Wang, Wei
    Gunawan, Oki
    Hovel, Harold J.
    Todorov, Teodor K.
    Mitzi, David B.
    ENERGY & ENVIRONMENTAL SCIENCE, 2014, 7 (03) : 1029 - 1036
  • [29] Technological status of Cu2ZnSn(S,Se)4 thin film solar cells
    Fella, Carolin M.
    Romanyuk, Yaroslav E.
    Tiwari, Ayodhya N.
    SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2013, 119 : 276 - 277
  • [30] Growth and characterization of Cu2ZnSn(S,Se)4 thin films for solar cells
    Salome, P. M. P.
    Malaquias, J.
    Fernandes, P. A.
    Ferreira, M. S.
    da Cunha, A. F.
    Leitao, J. P.
    Gonzalez, J. C.
    Matinaga, F. M.
    SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2012, 101 : 147 - 153