Capturing coacervate formation and protein partition by molecular dynamics simulation

被引:9
|
作者
Liu, Yang [1 ,2 ]
Wang, Xinyan [2 ]
Wan, Zhili [3 ]
Ngai, To [2 ]
Tse, Ying-Lung Steve [2 ]
机构
[1] Sichuan Univ, Coll Polymer Sci & Engn, State Key Lab Polymer Mat Engn, Chengdu 610065, Peoples R China
[2] Chinese Univ Hong Kong, Dept Chem, Sha Tin, Hong Kong, Peoples R China
[3] South China Univ Technol, Sch Food Sci & Engn, Guangzhou, Peoples R China
基金
中国国家自然科学基金;
关键词
COARSE-GRAINED MODEL; MEMBRANELESS ORGANELLES; FORCE-FIELD; ACTIN; COMPARTMENTALIZATION; SOFTWARE; RNA;
D O I
10.1039/d2sc01164f
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Biomolecules localize and function in microenvironments where their local concentration, spatial organization, and biochemical reactivity are regulated. To compartmentalize and control the local properties of the native microenvironment, cellular mimics and artificial bioreactors have been developed to study the properties of membraneless organelles or mimic the bio-environment for life origin. Here, we carried out molecular dynamics simulation with the Martini 3.0 model to reproduce the experimental salt concentration and pH dependency of different complex coacervates. We showed that coacervates inside vesicles are able to change their shape. In addition, we used these coacervate systems to explore the partitioning of the ubiquitous cytoskeletal protein actin and found that actin spontaneously partitions to all the coacervate peripheries. Therefore, we believe that our study can provide a better understanding of the versatile coacervate platform, where biomolecules partition and gather to fulfill their biological duties.
引用
收藏
页码:1168 / 1175
页数:8
相关论文
共 50 条
  • [1] A molecular dynamics simulation of the formation of fullerenes
    Astakhova, TY
    Vinogradov, GA
    Shaginyan, SA
    [J]. ZHURNAL FIZICHESKOI KHIMII, 1997, 71 (02): : 310 - 312
  • [2] Capturing Functional Motions of Membrane Channels and Transporters with Molecular Dynamics Simulation
    Shaikh, Saher Afshan
    Wen, Po-Chao
    Enkavi, Giray
    Huang, Zhijian
    Tajkhorshid, Emad
    [J]. JOURNAL OF COMPUTATIONAL AND THEORETICAL NANOSCIENCE, 2010, 7 (12) : 2481 - 2500
  • [3] Molecular Dynamics Simulation of Protein Biosurfactants
    Cheung, David L.
    Samantray, Suman
    [J]. COLLOIDS AND INTERFACES, 2018, 2 (03)
  • [4] Molecular Dynamics Simulation for Protein Unfolding
    Yu, Meng
    Si, Wei
    Sha, Jingjie
    [J]. 2020 IEEE 15TH INTERNATIONAL CONFERENCE ON NANO/MICRO ENGINEERED AND MOLECULAR SYSTEM (IEEE NEMS 2020), 2020, : 382 - 386
  • [5] Parallel molecular dynamics simulation of a protein
    Komeiji, Y
    Haraguchi, M
    Nagashima, U
    [J]. PARALLEL COMPUTING, 2001, 27 (08) : 977 - 987
  • [6] Coacervate formation studied by explicit solvent coarse-grain molecular dynamics with the Martini model
    Tsanai, Maria
    Frederix, Pim W. J. M.
    Schroer, Carsten F. E.
    Souza, Paulo C. T.
    Marrink, Siewert J.
    [J]. CHEMICAL SCIENCE, 2021, 12 (24) : 8521 - 8530
  • [7] FRET Reveals the Formation and Exchange Dynamics of Protein-Containing Complex Coacervate Core Micelles
    Nolles, Antsje
    Hooiveld, Ellard
    Westphal, Adrie H.
    van Berkel, Willem J. H.
    Kleijn, J. Mieke
    Borst, Jan Willem
    [J]. LANGMUIR, 2018, 34 (40) : 12083 - 12092
  • [8] Molecular dynamics simulation of amyloid β dimer formation
    Urbanc, B
    Cruz, L
    Ding, F
    Sammond, D
    Khare, S
    Buldyrev, SV
    Stanley, HE
    Dokholyan, NV
    [J]. BIOPHYSICAL JOURNAL, 2004, 87 (04) : 2310 - 2321
  • [9] Molecular Dynamics Simulation of the Formation of Metal Nanocontacts
    Klavsyuk, A. L.
    Kolesnikov, S. V.
    Smelova, E. M.
    Saletsky, A. M.
    [J]. PHYSICS OF THE SOLID STATE, 2011, 53 (11) : 2356 - 2360
  • [10] Molecular dynamics simulation of vascular network formation
    Butta, Paolo
    Cerreti, Fiammetta
    Servedio, Vito D. P.
    Triolo, Livio
    [J]. JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2009,