FRET Reveals the Formation and Exchange Dynamics of Protein-Containing Complex Coacervate Core Micelles

被引:21
|
作者
Nolles, Antsje [1 ,2 ]
Hooiveld, Ellard [1 ]
Westphal, Adrie H. [1 ,3 ]
van Berkel, Willem J. H. [1 ]
Kleijn, J. Mieke [2 ]
Borst, Jan Willem [1 ,3 ]
机构
[1] Wageningen Univ & Res, Biochem Lab, Stippeneng 4, NL-6708 WE Wageningen, Netherlands
[2] Wageningen Univ & Res, Phys Chem & Soft Matter, Stippeneng 4, NL-6708 WE Wageningen, Netherlands
[3] Wageningen Univ & Res, MicroSpectroscopy Ctr Wageningen, Stippeneng 4, NL-6708 WE Wageningen, Netherlands
关键词
GREEN FLUORESCENT PROTEIN; ENERGY-TRANSFER; POLYELECTROLYTE COMPLEXES; INTEGRAL-EQUATIONS; DIBLOCK COPOLYMER; ENCAPSULATION; PURIFICATION; RELAXATION; STABILITY; LYSOZYME;
D O I
10.1021/acs.langmuir.8b01272
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The encapsulation of proteins into complex coacervate core micelles (C3Ms) is of potential interest for a wide range of applications. To address the stability and dynamic properties of these polyelectrolyte complexes, combinations of cyan, yellow, and blue fluorescent proteins were encapsulated with cationic-neutral diblock copolymer poly(2-methyl-vinyl-pyridinium)(128)-b-poly(ethylene-oxide)(477). Forster resonance energy transfer (FRET) allowed us to determine the kinetics of C3M formation and of protein exchange between C3Ms. Both processes follow first-order kinetics with relaxation times of +/- 100 s at low ionic strength (I = 2.5 mM). Stability studies revealed that 50% of FRET was lost at I = 20 mM, pointing to the disintegration of the C3Ms. On the basis of experimental and theoretical considerations, we propose that C3Ms relax to their final state by association and dissociation of near-neutral soluble protein-polymer complexes. To obtain protein-containing C3Ms suitable for applications, it is necessary to improve the rigidity and salt stability of these complexes.
引用
收藏
页码:12083 / 12092
页数:10
相关论文
共 50 条
  • [1] FRET-Based Determination of the Exchange Dynamics of Complex Coacervate Core Micelles
    Bos, Inge
    Timmerman, Marga
    Sprakel, Joris
    [J]. MACROMOLECULES, 2021, 54 (01) : 398 - 411
  • [2] Complex coacervate core micelles
    Voets, Ilja K.
    de Keizer, Arie
    Stuart, Martien A. Cohen
    [J]. ADVANCES IN COLLOID AND INTERFACE SCIENCE, 2009, 147-48 : 300 - 318
  • [3] Stability of complex coacervate core micelles containing metal coordination polymer
    Yan, Yun
    de Keizer, Arie
    Stuart, Martien A. Cohen
    Drechsler, Markus
    Besseling, Nicolaas A. M.
    [J]. JOURNAL OF PHYSICAL CHEMISTRY B, 2008, 112 (35): : 10908 - 10914
  • [4] Langevin Dynamics Simulations of the Exchange of Complex Coacervate Core Micelles: The Role of Nonelectrostatic Attraction and Polyelectrolyte Length
    Bos, Inge
    Sprakel, Joris
    [J]. MACROMOLECULES, 2019, 52 (22) : 8923 - 8931
  • [5] Formation of micelles with complex coacervate cores
    Stuart, MAC
    Besseling, NAM
    Fokkink, RG
    [J]. LANGMUIR, 1998, 14 (24) : 6846 - 6849
  • [6] Molecular Exchange Kinetics in Complex Coacervate Core Micelles: Role of Associative Interaction
    Heo, Tae-Young
    Kim, Sojeong
    Chen, Liwen
    Sokolova, Anna
    Lee, Sangwoo
    Choi, Soo-Hyung
    [J]. ACS MACRO LETTERS, 2021, 10 (09) : 1138 - 1144
  • [7] Scaling Theory of Complex Coacervate Core Micelles
    Rumyantsev, Artem M.
    Zhulina, Ekaterina B.
    Borisov, Oleg V.
    [J]. ACS MACRO LETTERS, 2018, 7 (07): : 811 - 816
  • [8] Encapsulation of GFP in Complex Coacervate Core Micelles
    Nolles, Antsje
    Westphal, Adrie H.
    de Hoop, Jacob A.
    Fokkink, Remco G.
    Kleijn, J. Mieke
    van Berkel, Willem J. H.
    Borst, Jan Willem
    [J]. BIOMACROMOLECULES, 2015, 16 (05) : 1542 - 1549
  • [9] CHARACTERIZATION OF PROTEIN-CONTAINING REVERSED MICELLES
    HILHORST, R
    VERHAERT, RMD
    VISSER, AJWG
    [J]. BIOCHEMICAL SOCIETY TRANSACTIONS, 1991, 19 (03) : 666 - 670
  • [10] Complex coacervate core micelles as diffusional nanoprobes
    Bourouina, Nadia
    Stuart, Martien A. Cohen
    Kleijn, J. Mieke
    [J]. SOFT MATTER, 2014, 10 (02) : 320 - 331