An automatic channel selection method based on the standard deviation of wavelet coefficients for motor imagery based brain-computer interfacing

被引:11
|
作者
Mahamune, Rupesh [1 ]
Laskar, Shahedul H. [1 ]
机构
[1] Natl Inst Technol Silchar, Dept Elect & Instrumentat Engn, Silchar, Assam, India
关键词
brain computer interface; common spatial pattern; continuous wavelet transform; convolutional neural network; electroencephalogram signals; motor imagery; COMMON SPATIAL-PATTERN; SINGLE-TRIAL EEG; CLASSIFICATION; PERFORMANCE; TRANSFORM; ENTROPY;
D O I
10.1002/ima.22821
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The redundant data in multichannel electroencephalogram (EEG) signals significantly reduces the performance of brain-computer interface (BCI) systems. By removing redundant channels, a channel selection strategy increases the classification accuracy of BCI systems. In this work, a novel channel selection method (stdWC) based on the standard deviation of wavelet coefficients across channels is proposed to identify Motor Imagery (MI) based EEG signals. The wavelet coefficients are calculated by employing a Continuous Wavelet Transform (CWT) filter bank to decompose each trial from the EEG channel. The wavelet coefficient's standard deviation values are obtained across the channels, and these values are then sorted to determine the EEG channels with the highest standard deviation values. The channels with the largest wavelet coefficient divergence are chosen. MI trials are then spatially filtered with the Common Spatial Pattern (CSP), and CWT filter bank-based 2D images are generated from the spatially filtered trials. These images are then classified using a unique nine-layered convolutional neural network (CNN) model that combines two feature maps acquired with differing filter sizes. The proposed framework (stdWC-CSP-CNN) is evaluated using kappa score and classification accuracy on two publically accessible datasets (BCI Competition III dataset IVa and BCI Competition IV dataset 2a). The suggested framework achieved a mean test classification accuracy of 88.8% for dataset IVa from BCI Competition III and 75.03% for dataset 2a from BCI Competition IV, according to the results. The proposed channel selection method outperforms the other channel selection methods examined, according to the results. By rejecting redundant channels, the whole framework can improve the performance of MI-based BCIs.
引用
收藏
页码:714 / 728
页数:15
相关论文
共 50 条
  • [31] Graph Convolution Neural Network Based End-to-End Channel Selection and Classification for Motor Imagery Brain-Computer Interfaces
    Sun, Biao
    Liu, Zhengkun
    Wu, Zexu
    Mu, Chaoxu
    Li, Ting
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2023, 19 (09) : 9314 - 9324
  • [32] A logistic binary Jaya optimization-based channel selection scheme for motor-imagery classification in brain-computer interface
    Tiwari, Anurag
    EXPERT SYSTEMS WITH APPLICATIONS, 2023, 223
  • [33] Design of electrode layout for motor imagery based brain-computer interface
    Wang, Y.
    Hong, B.
    Gao, X.
    Gao, S.
    ELECTRONICS LETTERS, 2007, 43 (10) : 557 - 558
  • [34] Normalization of Feature Distribution in Motor Imagery Based Brain-Computer Interfaces
    Binias, Bartosz
    Grzejszczak, Tomasz
    Niezabitowski, Michal
    2016 24TH MEDITERRANEAN CONFERENCE ON CONTROL AND AUTOMATION (MED), 2016, : 1337 - 1342
  • [35] Feature Extraction of Brain-Computer Interface Electroencephalogram Based on Motor Imagery
    Shi, Tianwei
    Ren, Ling
    Cui, Wenhua
    IEEE SENSORS JOURNAL, 2020, 20 (20) : 11787 - 11794
  • [36] A Predictive Speller Controlled by a Brain-Computer Interface Based on Motor Imagery
    D'Albis, Tiziano
    Blatt, Rossella
    Tedesco, Roberto
    Sbattella, Licia
    Matteucci, Matteo
    ACM TRANSACTIONS ON COMPUTER-HUMAN INTERACTION, 2012, 19 (03)
  • [37] Design of a Robotic Wheelchair with a Motor Imagery based Brain-Computer Interface
    Kim, Keun-Tae
    Carlson, Tom
    Lee, Seong-Whan
    2013 IEEE INTERNATIONAL WINTER WORKSHOP ON BRAIN-COMPUTER INTERFACE (BCI), 2013, : 46 - 48
  • [38] Classification of motor imagery tasks for electrocorticogram based brain-computer interface
    Xu F.
    Zhou W.
    Zhen Y.
    Yuan Q.
    Zhou, W. (wdzhou@sdu.edu.cn), 1600, Springer Verlag (04): : 149 - 157
  • [39] Electroencephalography-Based Brain-Computer Interface Motor Imagery Classification
    Mohammadi, Ehsan
    Daneshmand, Parisa Ghaderi
    Khorzooghi, Seyyed Mohammad Sadegh Moosavi
    JOURNAL OF MEDICAL SIGNALS & SENSORS, 2022, 12 (01): : 40 - 47
  • [40] Development of a Wearable Motor-Imagery-Based Brain-Computer Interface
    Lin, Bor-Shing
    Pan, Jeng-Shyang
    Chu, Tso-Yao
    Lin, Bor-Shyh
    JOURNAL OF MEDICAL SYSTEMS, 2016, 40 (03) : 1 - 8