Alpha particles range modified by hot electrons adversely affects the energy threshold in direct-drive inertial confinement fusion

被引:2
|
作者
Temporal, M. [1 ,2 ]
Piriz, A. R. [1 ,2 ]
Canaud, B. [3 ,4 ]
Ramis, R. [5 ]
机构
[1] Univ Castilla La Mancha, Inst Invest Energet INEI, ETSII, Ciudad Real 13071, Spain
[2] Univ Castilla La Mancha, CYTEMA, Ciudad Real 13071, Spain
[3] CEA, DAM, DIF, F-91297 Arpajon, France
[4] Univ Paris Saclay, CEA, LMCE, Bruyeres Le Chatel 91680, France
[5] Univ Politecn Madrid, ETSI Aeronaut & Espacio, E-28040 Madrid, Spain
来源
EUROPEAN PHYSICAL JOURNAL PLUS | 2024年 / 139卷 / 01期
关键词
IGNITION ENERGY; TARGET DESIGNS; DEPENDENCE; PLASMAS; BURN;
D O I
10.1140/epjp/s13360-023-04765-w
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Implosion of a directly driven inertial confinement fusion capsule can be affected by laser-plasma instability. At relatively high laser intensities the laser energy dispersed in electron plasma wave converts a fraction of the laser energy into hot electrons that, by heating the compressed Deuterium-Tritium fuel, increases the temperature and the isentropic parameter while decreases the density. All these effects worsen the implosion process by increasing the ignition energy. Furthermore, it was found that the penetration deep of the alpha particles is also modified by changes in temperature and density, and consequently the amount of mass of the high-density fuel shell heated by alpha particles increases between 15 and 50% when accounting for hot electrons. This additional effect negatively affects the propagation of the thermonuclear burn wave and makes necessary to consider more robust laser-capsule configurations, and consequently larger laser energies, in order to achieve high energy gain.
引用
收藏
页数:8
相关论文
共 50 条
  • [31] Effects of hydrogen concentration in ablator material on stimulated Raman scattering, two-plasmon decay, and hot electrons for direct-drive inertial confinement fusion
    Kawasaki, K.
    Cristoforetti, G.
    Idesaka, T.
    Hironaka, Y.
    Tanaka, D.
    Batani, D.
    Fujioka, S.
    Gizzi, L. A.
    Hata, M.
    Johzaki, T.
    Katagiri, K.
    Kodama, R.
    Nagatomo, H.
    Matsuo, S.
    Nicolai, Ph.
    Ozaki, N.
    Sentoku, Y.
    Takizawa, R.
    Yogo, A.
    Yamada, H.
    Shigemori, K.
    PHYSICAL REVIEW RESEARCH, 2023, 5 (03):
  • [32] Linear stability analysis of double ablation fronts in direct-drive inertial confinement fusion
    Yanez, C.
    Sanz, J.
    Olazabal-Loume, M.
    Ibanez, L. F.
    PHYSICS OF PLASMAS, 2011, 18 (05)
  • [33] Progress in hydrodynamics theory and experiments for direct-drive and fast ignition inertial confinement fusion
    Betti, R.
    Anderson, K.
    Boehly, T. R.
    Collins, T. J. B.
    Craxton, R. S.
    Delettrez, J. A.
    Edgell, D. H.
    Epstein, R.
    Glebov, V. Yu
    Goncharov, V. N.
    Harding, D. R.
    Keck, R. L.
    Kelly, J. H.
    Knauer, J. P.
    Loucks, S. J.
    Marozas, J. A.
    Marshall, F. J.
    Maximov, A. V.
    Maywar, D. N.
    McCrory, R. L.
    McKenty, P. W.
    Meyerhofer, D. D.
    Myatt, J.
    Radha, P. B.
    Regan, S. P.
    Ren, C.
    Sangster, T. C.
    Seka, W.
    Skupsky, S.
    Solodov, A. A.
    Smalyuk, V. A.
    Soures, J. M.
    Stoeck, C.
    Theobald, W.
    Yaakobi, B.
    Zhou, C.
    Zuegel, J. D.
    Frenje, J. A.
    Li, C. K.
    Petrasso, R. D.
    Seguin, F. H.
    PLASMA PHYSICS AND CONTROLLED FUSION, 2006, 48 (12B) : B153 - B163
  • [34] Two-plasmon-decay instability in direct-drive inertial confinement fusion experiments
    Seka, W.
    Edgell, D. H.
    Myatt, J. F.
    Maximov, A. V.
    Short, R. W.
    Goncharov, V. N.
    Baldis, H. A.
    PHYSICS OF PLASMAS, 2009, 16 (05)
  • [35] Studies of plastic-ablator compressibility for direct-drive inertial confinement fusion on OMEGA
    Hu, S. X.
    Smalyuk, V. A.
    Goncharov, V. N.
    Knauer, J. P.
    Radha, P. B.
    Igumenshchev, I. V.
    Marozas, J. A.
    Stoeckl, C.
    Yaakobi, B.
    Shvarts, D.
    Sangster, T. C.
    McKenty, P. W.
    Meyerhofer, D. D.
    Skupsky, S.
    Mccrory, R. L.
    PHYSICAL REVIEW LETTERS, 2008, 100 (18)
  • [36] Mitigation of Laser Imprinting with Diamond Ablator for Direct-Drive Inertial Confinement Fusion Targets
    Shigemori, K.
    Kato, H.
    Nakai, M.
    Hosogi, R.
    Sakaiya, T.
    Terasaki, H.
    Fujioka, S.
    Sunahara, A.
    Azechi, H.
    8TH INTERNATIONAL CONFERENCE ON INERTIAL FUSION SCIENCES AND APPLICATIONS (IFSA 2013), 2016, 688
  • [37] Radiation hydrodynamic theory of double ablation fronts in direct-drive inertial confinement fusion
    Sanz, J.
    Betti, R.
    Smalyuk, V. A.
    Olazabal-Loume, M.
    Drean, V.
    Tikhonchuk, V.
    Ribeyre, X.
    Feugeas, J.
    PHYSICS OF PLASMAS, 2009, 16 (08)
  • [38] Origins and Scaling of Hot-Electron Preheat in Ignition-Scale Direct-Drive Inertial Confinement Fusion Experiments
    Rosenberg, M. J.
    Solodov, A. A.
    Myatt, J. F.
    Seka, W.
    Michel, P.
    Hohenberger, M.
    Short, R. W.
    Epstein, R.
    Regan, S. P.
    Campbell, E. M.
    Chapman, T.
    Goyon, C.
    Ralph, J. E.
    Barrios, M. A.
    Moody, J. D.
    Bates, J. W.
    PHYSICAL REVIEW LETTERS, 2018, 120 (05)
  • [39] A wave-based model for cross-beam energy transfer in direct-drive inertial confinement fusion
    Myatt, J. F.
    Follett, R. K.
    Shaw, J. G.
    Edgell, D. H.
    Froula, D. H.
    Igumenshchev, I. V.
    Goncharov, V. N.
    PHYSICS OF PLASMAS, 2017, 24 (05)
  • [40] Direct-drive heavy ion beam inertial confinement fusion: a review, toward our future energy source
    Kawata, Shigeo
    ADVANCES IN PHYSICS-X, 2021, 6 (01):