Mechanical properties and energy absorption performance of foamed geopolymer under quasi-static and dynamic compression

被引:1
|
作者
Wang, Xiaojuan [1 ]
Cui, Haoru [1 ]
Zhou, Hongyuan [1 ,2 ]
Song, Tianyi [1 ]
Zhang, Hong [2 ]
Liu, Hao [1 ]
Liu, Yuankun [3 ]
机构
[1] Beijing Univ Technol, Key Lab Urban Secur & Disaster Engn, Minist Educ, Beijing 100124, Peoples R China
[2] Beijing Inst Technol, State Key Lab Explos Sci & Technol, Beijing 100081, Peoples R China
[3] Beijing Univ Technol, Coll Civil Engn & Architecture, Municipal Engn Dept, Beijing 100124, Peoples R China
基金
中国国家自然科学基金;
关键词
Foamed geopolymer; Mechanical properties; Energy absorption; Dynamic increase factor; Dynamic compressive test; FLY-ASH; CONCRETE; CEMENT; SLAG; WASTE;
D O I
10.1016/j.conbuildmat.2023.133296
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
To assess the potential for substituting foam concrete with low-carbon foamed geopolymer (FG) in the field of structural protection, a series of quasi-static and dynamic compression tests were conducted. These tests aimed to examine the mechanical performance and energy absorption of FG while considering the factors of FG density, granulated blast furnace slag (GBFS) replacement rate, and water-solid ratio. Additionally, supplementary in-vestigations involving XRD analysis, indentation tests, X-CT scanning, and 3D reconstruction techniques were conducted to explore the influence of GBFS replacement rate on the energy absorption of FG in terms of base material properties and internal pore structure. The results of the quasi-static compressive tests showed that increasing the FG density and reducing the water-solid ratio had a positive effect on energy absorption, however, it also resulted in a notable increase in peak strength. Increasing the GBFS replacement rate not only enhanced the load-bearing capacity but also increased the extent of spalling damage, thus FG with a moderate GBFS replacement rate of 20% demonstrated superior performance in terms of energy absorption and load transfer. Under dynamic compression, all specimens predominantly experienced vertical splitting failure. However, with increasing loading velocity, crushing failure emerged at the two ends of the specimens, particularly in the case of low-density specimens. As the loading velocity increased, the specimen exhibited a significant increase in peak strength, demonstrating a notable strain rate effect, however, the energy absorption of the specimen remained relatively stable without significant alterations. In addition, a simplified DIF was proposed to predict the peak strength of FG with varying densities and two distinct GBFS replacement rates under different strain rates. It provided some valuable insights into the potential application of FG in the field of structural protection.
引用
收藏
页数:19
相关论文
共 50 条
  • [41] Numerical studies of aluminum foam filled energy absorption connectors under quasi-static compression loading
    Wang, Yonghui
    Zhai, Ximei
    Wang, Wei
    THIN-WALLED STRUCTURES, 2017, 116 : 225 - 233
  • [42] Energy absorption of braided composite tubes under quasi-static combined shear-compression loading
    Hwang, Yong-Ha
    Park, Ill Kyung
    Han, Jae-Hung
    Advanced Composite Materials, 2024,
  • [43] Large Deformation and Energy Absorption Behaviour of Perforated Hollow Sphere Structures under Quasi-Static Compression
    Dai, Meiling
    Liang, Junping
    Cheng, Cheng
    Wu, Zhiwen
    Lu, Jiexun
    Deng, Jiyu
    MATERIALS, 2021, 14 (13)
  • [44] Energy absorption mechanism of filament wound composite sandwich cylinder under quasi-static compression loading
    Zhou X.
    Mei Z.
    Wu F.
    Fuhe Cailiao Xuebao/Acta Materiae Compositae Sinica, 2017, 34 (08): : 1764 - 1771
  • [45] Investigations on the quasi-static/dynamic mechanical properties of 3D printed random honeycombs under in-plane compression
    Luo, Geng
    Chai, Chengpeng
    Chen, Yisong
    Li, Lang
    Xue, Pu
    THIN-WALLED STRUCTURES, 2023, 190
  • [46] Surface energy of coal particles under quasi-static compression and dynamic impact based on fractal theory
    Wang, Chenghao
    Cheng, Yuanping
    Yi, Minghao
    Hu, Biao
    Jiang, Zhaonan
    FUEL, 2020, 264
  • [47] On the energy absorption in a novel CoFeSiB metallic-glass fiber/epoxy resin composite under quasi-static and dynamic compression conditions
    Liang, Weizhong
    Wang, Longxing
    Liaw, Peter K.
    Liu, Yingyi
    Wei, Ransong
    Xu, Jiawen
    POLYMER COMPOSITES, 2024, 45 (06) : 5290 - 5299
  • [48] Quasi-static compression properties of graphene aerogel
    Niu, Lulu
    Xie, Jing
    Chen, Pengwan
    Li, Guangyong
    Zhang, Xuetong
    DIAMOND AND RELATED MATERIALS, 2021, 111
  • [49] Influence of Temperature on the Mechanical Properties and Reactive Behavior of Al-PTFE under Quasi-Static Compression
    Wang, Huai-Xi
    Fang, Xiang
    Feng, Bin
    Gao, Zhen-Ru
    Wu, Shuang-Zhang
    Li, Yu-Chun
    POLYMERS, 2018, 10 (01):
  • [50] Quasi-static and dynamic mechanical properties of Miura-ori metamaterials
    Xiang, Xinmei
    Qiang, Wei
    Hou, Bing
    Tran, Phuong
    Lu, Guoxing
    THIN-WALLED STRUCTURES, 2020, 157