A Dual Transformer Super-Resolution Network for Improving the Definition of Vibration Image

被引:2
|
作者
Zhu, Yang [1 ]
Wang, Sen [1 ]
Zhang, Yinhui [1 ]
He, Zifen [1 ]
Wang, Qingjian [1 ]
机构
[1] Kunming Univ Sci & Technol, Fac Mech & Elect Engn, Kunming 650500, Peoples R China
基金
中国国家自然科学基金;
关键词
Vibrations; Transformers; Superresolution; Feature extraction; Image reconstruction; Task analysis; Displacement measurement; Attention mechanism; computer vision; image super-resolution; transformer; visual vibration measurement;
D O I
10.1109/TIM.2022.3222503
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Visual measurement methods are gaining more and more attention in the field of structural body health monitoring due to the advantages of long-range, noncontact, and multipoint monitoring. However, the imaging system is usually affected by many factors, such as distortion, blurring, and noise, which lead to displacement measurement errors after the degradation of the acquired image quality. Therefore, in this article, we propose a structural body image super-resolution network based on a dual transformer architecture to improve the clarity of the collected structural body vibration displacement image to better capture the vibration displacement information of the target. Meanwhile, we design a dual transformer block based on an encoder-decoder architecture for the characteristics of vision-based structural body vibration displacement measurement tasks to better extract structural body image details and edge feature information. In this module, we introduce two different transformers. In addition, modules based on the encoder-decoder architecture focus more on the input and output image information and often ignore the feature information in different layers. Therefore, we introduce an attention mechanism in the network and interact with the feature information in different layers of the encoder-decoder architecture to obtain a better structural body image super-resolution effect. After comparison tests with the rest of the latest and most classical networks as well as the current optimal networks, it is shown that our network obtains excellent image reconstruction results under different structural body vibration image datasets (SETs), which also provides a strong guarantee for the task of accurate vision-based structural body vibration displacement measurement.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] A Dual CNN for Image Super-Resolution
    Song, Jiagang
    Xiao, Jingyu
    Tian, Chunwei
    Hu, Yuxuan
    You, Lei
    Zhang, Shichao
    ELECTRONICS, 2022, 11 (05)
  • [32] Super-Resolution Generative Adversarial Network Based on the Dual Dimension Attention Mechanism for Biometric Image Super-Resolution
    Huang, Chi-En
    Li, Yung-Hui
    Aslam, Muhammad Saqlain
    Chang, Ching-Chun
    SENSORS, 2021, 21 (23)
  • [33] A Dual-Network Based Super-Resolution for Compressed High Definition Video
    Feng, Longtao
    Zhang, Xinfeng
    Zhang, Xiang
    Wang, Shanshe
    Wang, Ronggang
    Ma, Siwei
    ADVANCES IN MULTIMEDIA INFORMATION PROCESSING, PT I, 2018, 11164 : 600 - 610
  • [34] Spstnet: image super-resolution using spatial pyramid swin transformer network
    Yemei Sun
    Jiao Wang
    Yue Yang
    Yan Zhang
    Signal, Image and Video Processing, 2025, 19 (4)
  • [35] Adaptive Importance Learning for Improving Lightweight Image Super-Resolution Network
    Zhang, Lei
    Wang, Peng
    Shen, Chunhua
    Liu, Lingqiao
    Wei, Wei
    Zhang, Yanning
    van den Hengel, Anton
    INTERNATIONAL JOURNAL OF COMPUTER VISION, 2020, 128 (02) : 479 - 499
  • [36] Efficiently Amalgamated CNN-Transformer Network for Image Super-Resolution Reconstruction
    Zheng, Mengyuan
    Zang, Huaijuan
    Liu, Xinzhi
    Cheng, Guoan
    Zhan, Shu
    PATTERN RECOGNITION AND COMPUTER VISION, PRCV 2023, PT XI, 2024, 14435 : 3 - 13
  • [37] CTCNet: A CNN-Transformer Cooperation Network for Face Image Super-Resolution
    Gao, Guangwei
    Xu, Zixiang
    Li, Juncheng
    Yang, Jian
    Zeng, Tieyong
    Qi, Guo-Jun
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2023, 32 : 1978 - 1991
  • [38] A CNN-Transformer Embedded Unfolding Network for Hyperspectral Image Super-Resolution
    Tang, Yao
    Li, Jie
    Yue, Linwei
    Liu, Xinxin
    Li, Yajie
    Xiao, Yi
    Yuan, Qiangqiang
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62
  • [39] PERCEPTION-ORIENTED OMNIDIRECTIONAL IMAGE SUPER-RESOLUTION BASED ON TRANSFORMER NETWORK
    An, Hongyu
    Zhang, Xinfeng
    2023 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, ICIP, 2023, : 3583 - 3587
  • [40] Fusformer: A Transformer-Based Fusion Network for Hyperspectral Image Super-Resolution
    Hu, Jin-Fan
    Huang, Ting-Zhu
    Deng, Liang-Jian
    Dou, Hong-Xia
    Hong, Danfeng
    Vivone, Gemine
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19