Fundamentals of Polaritons in Strongly Anisotropic Thin Crystal Layers

被引:6
|
作者
Voronin, Kirill V. [1 ]
Alvarez-Perez, Gonzalo [2 ,3 ]
Lanza, Christian [2 ]
Alonso-Gonzalez, Pablo [2 ,3 ]
Nikitin, Alexey Y. [1 ,4 ]
机构
[1] Donostia Int Phys Ctr DIPC, Donostia San Sebastian 20018, Spain
[2] Univ Oviedo, Dept Phys, Oviedo 33006, Spain
[3] Univ Oviedo, CSIC, CINN, Ctr Res Nanomat & Nanotechnol, El Entrego 33940, Spain
[4] Basque Fdn Sci, IKERBASQUE, Bilbao 48013, Spain
基金
欧洲研究理事会;
关键词
optical anisotropy; hyperbolic medium; dispersionrelation; surface and volume modes; transverse electricmodes; polaritons; HYPERBOLIC SURFACE-POLARITONS; NEGATIVE REFRACTION; PHONON POLARITONS; PROPAGATION;
D O I
10.1021/acsphotonics.3c01428
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Polaritons in strongly anisotropic thin layers have recently captured considerable attention in nanophotonics because of their directional propagation at the nanoscale, which offers unique possibilities for nano-optical applications. However, exploiting the full potential of anisotropic polaritons requires a thorough understanding of their properties, including field confinement, energy, and phase propagation direction and losses. Here, we provide novel insights into some fundamental aspects of the propagation of anisotropic polaritons in thin biaxial layers. In particular, we introduce a novel methodology that allows us to represent isofrequency curves of polaritons in strongly anisotropic materials, considering that the real and imaginary parts of the wavevector are not parallel. In fact, we analytically show that the direction of the imaginary part of the wavevector is parallel to the group velocity, which can have different, even perpendicular or opposite, directions with respect to the phase velocity. This finding is crucial for understanding polaritonic phenomena in anisotropic media; yet, it has so far been widely overlooked in the literature. Additionally, we introduce a criterion for classifying the polaritonic modes in biaxial layers into volume and surface categories and analyze their dispersion, field structure, and losses. Finally, we discover the existence of previously unexplored anisotropic transverse-electric-like modes, which can exhibit natural canalization. Taken together, our results shed light on hitherto unexplored areas of the theory of electromagnetic modes in thin biaxial layers. Although exemplified for van der Waals alpha-MoO3 layers, our findings are general for polaritons in other strongly anisotropic biaxial hyperbolic crystals.
引用
收藏
页码:550 / 560
页数:11
相关论文
共 50 条
  • [31] An anisotropic thin crystal deformed by an inclined dislocation
    Bonnet, Roland
    Neily, Salem
    PHILOSOPHICAL MAGAZINE, 2015, 95 (25) : 2764 - 2776
  • [32] Nonlinear polaritons in anisotropic superlattices
    Pereira, MF
    Peng, QY
    Manzke, G
    Henneberger, K
    PHYSICA STATUS SOLIDI A-APPLIED RESEARCH, 1997, 164 (01): : 199 - 203
  • [33] Diffusive Propagation of Exciton-Polaritons through Thin Crystal Slabs
    D. A. Zaitsev
    N. D. Il’ynskaya
    A. V. Koudinov
    N. K. Poletaev
    E. V. Nikitina
    A. Yu. Egorov
    A. V. Kavokin
    R. P. Seisyan
    Scientific Reports, 5
  • [34] Diffusive Propagation of Exciton-Polaritons through Thin Crystal Slabs
    Zaitsev, D. A.
    Il'ynskaya, N. D.
    Koudinov, A. V.
    Poletaev, N. K.
    Nikitina, E. V.
    Egorov, A. Yu
    Kavokin, A. V.
    Seisyan, R. P.
    SCIENTIFIC REPORTS, 2015, 5
  • [35] Publisher Correction: Bosonic condensation of exciton–polaritons in an atomically thin crystal
    Carlos Anton-Solanas
    Maximilian Waldherr
    Martin Klaas
    Holger Suchomel
    Tristan H. Harder
    Hui Cai
    Evgeny Sedov
    Sebastian Klembt
    Alexey V. Kavokin
    Sefaattin Tongay
    Kenji Watanabe
    Takashi Taniguchi
    Sven Höfling
    Christian Schneider
    Nature Materials, 2021, 20 (9) : 1302 - 1302
  • [36] CRYSTAL-GROWTH OF THIN-LAYERS
    MULLER, H
    OPITZ, C
    ZEITSCHRIFT FUR CHEMIE, 1976, 16 (08): : 332 - 333
  • [37] Thickness determination of thin transparent crystal layers
    Bauer, G
    ANNALEN DER PHYSIK, 1931, 8 (01) : 7 - 46
  • [38] Long-wave model for strongly anisotropic growth of a crystal step
    Khenner, Mikhail
    PHYSICAL REVIEW E, 2013, 88 (02):
  • [39] PRECISION POLISHING OF THIN SINGLE CRYSTAL LAYERS
    WILSON, RB
    JOURNAL OF SCIENTIFIC INSTRUMENTS, 1967, 44 (02): : 159 - +
  • [40] Bending losses of optically anisotropic exciton polaritons in organic molecular-crystal nanofibers
    Takeda, Hiroyuki
    Sakoda, Kazuaki
    OPTICS EXPRESS, 2013, 21 (25): : 31420 - 31429