High-entropy materials for electrochemical energy storage devices

被引:1
|
作者
Qu, Jie [1 ]
Buckingham, Mark A. [1 ]
Lewis, David J. [1 ]
机构
[1] Univ Manchester, Dept Mat, Oxford Rd, Manchester M13 9PL, England
来源
ENERGY ADVANCES | 2023年 / 2卷 / 10期
基金
英国工程与自然科学研究理事会; 英国科研创新办公室;
关键词
PRUSSIAN BLUE ANALOGS; MECHANICAL-PROPERTIES; ANODE MATERIAL; LONG-LIFE; OXIDE; CATHODE; STABILITY; MICROSTRUCTURE; MULTICOMPONENT; BATTERIES;
D O I
10.1039/d3ya00319a
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Single phased, high-entropy materials (HEMs) have yielded new advancements as energy storage materials. The mixing of manifold elements in a single lattice has been found to induce synergistic effects leading to superior physicochemical properties. In this review, we summarize recent advances of HEMs in energy storage applications such as metal-ion batteries, supercapacitors, and fuel cells. We begin with defining HE materials (HEMs) and discussion of the synthetic methods and characterization techniques appropriate for evaluating HEMs at various length scales. We also discuss the application of a wide variety of HEMs, including HE alloys, oxides, chalcogenides, Prussian blue analogues, and sodium super ionic conductor (NASICON) materials in energy storage systems. Finally, advantages, challenges, and future perspectives of HEMs in energy storage systems are discussed. Lewis and co-workers review the use of high entropy materials in electrochemical energy storage devices.
引用
收藏
页码:1565 / 1590
页数:26
相关论文
共 50 条
  • [41] High-entropy ferroelectric materials
    Qi, He
    Chen, Liang
    Deng, Shiqing
    Chen, Jun
    [J]. NATURE REVIEWS MATERIALS, 2023, 8 (06) : 355 - 356
  • [42] High-entropy hexacyanoferrates as robust cathode active materials for sodium storage
    Ma, Yuan
    Brezesinski, Torsten
    Breitung, Ben
    Ma, Yanjiao
    [J]. MATTER, 2023, 6 (02) : 313 - 315
  • [43] Nanostructured high-entropy materials
    Hache, Michel J. R.
    Cheng, Changjun
    Zou, Yu
    [J]. JOURNAL OF MATERIALS RESEARCH, 2020, 35 (08) : 1051 - 1075
  • [44] High-Entropy Photothermal Materials
    He, Cheng-Yu
    Li, Yang
    Zhou, Zhuo-Hao
    Liu, Bao-Hua
    Gao, Xiang-Hu
    [J]. ADVANCED MATERIALS, 2024, 36 (24)
  • [45] High-entropy functional materials
    Michael C. Gao
    Daniel B. Miracle
    David Maurice
    Xuehui Yan
    Yong Zhang
    Jeffrey A. Hawk
    [J]. Journal of Materials Research, 2018, 33 : 3138 - 3155
  • [46] High-entropy ferroelectric materials
    He Qi
    Liang Chen
    Shiqing Deng
    Jun Chen
    [J]. Nature Reviews Materials, 2023, 8 : 355 - 356
  • [47] High-Entropy Materials in Focus
    Li, Yuyin
    Luo, Zhengtang
    Skrabalak, Sara E.
    Xiong, Yujie
    [J]. CHEMISTRY OF MATERIALS, 2024, 36 (12) : 5859 - 5860
  • [48] Lignin-based materials for electrochemical energy storage devices
    Wang, Huan
    Fu, Fangbao
    Huang, Ming
    Feng, Yunhui
    Han, Dongxue
    Xi, Yuebin
    Xiong, Wenlong
    Yang, Dongjie
    Niu, Li
    [J]. NANO MATERIALS SCIENCE, 2023, 5 (02) : 141 - 160
  • [49] Hybridization design of materials and devices for flexible electrochemical energy storage
    Hou, Ruizuo
    Gund, Girish Sambhaji
    Qi, Kai
    Nakhanivej, Puritut
    Liu, Hongfang
    Li, Feng
    Xia, Bao Yu
    Park, Ho Seok
    [J]. ENERGY STORAGE MATERIALS, 2019, 19 : 212 - 241
  • [50] Lignin-based materials for electrochemical energy storage devices
    Huan Wang
    Fangbao Fu
    Ming Huang
    Yunhui Feng
    Dongxue Han
    Yuebin Xi
    Wenlong Xiong
    Dongjie Yang
    Li Niu
    [J]. Nano Materials Science, 2023, (02) : 141 - 160