Application of fuzzy support vector regression machine in power load prediction

被引:1
|
作者
Xia, Yan [1 ,2 ]
Yu, Shun [1 ,2 ]
Jiang, Liu [1 ]
Wang, Liming [1 ]
Lv, Haihua [1 ]
Shen, Qingze [1 ,2 ]
机构
[1] Shenyang Inst Engn, Sch Informat, Shenyang, Peoples R China
[2] Shenyang Key Lab Energy Internet Intelligent Perc, Shenyang, Peoples R China
关键词
Machine learning; fuzzy support vector regressive machine; power load prediction; membership function; boundary vector;
D O I
10.3233/JIFS-230589
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Power system load forecasting is a method that uses historical load data to predict electricity load data for a future time period. Aiming at the problems of general prediction accuracy and slow prediction speed in using typical machine learning methods, an improved fuzzy support vector regression machine method is proposed for power load forecasting. In this method, the boundary vector extraction technique is employed in the design of the membership function for fuzzy support vectors to differentiate the importance of different samples in the regression process. This method utilizes a membership function based on boundary vectors to assign differential weights to different sample points that used to differentiate the importance of different types of samples in the regression analysis process in order to improve the accuracy of electricity load prediction. The key parameters of the fuzzy support vector regression model are optimized, further enhancing the precision of the forecasting results. Simulation experiments are conducted using real power load data sets, and the experimental results demonstrate the effectiveness of the proposed method in terms of accuracy and speed in predicting power load data compared to other prediction models. This method can be widely applied in real power production and scheduling processes.
引用
收藏
页码:8027 / 8027
页数:1
相关论文
共 50 条
  • [31] Software Defect Prediction Using Fuzzy Support Vector Regression
    Yan, Zhen
    Chen, Xinyu
    Guo, Ping
    ADVANCES IN NEURAL NETWORKS - ISNN 2010, PT 2, PROCEEDINGS, 2010, 6064 : 17 - +
  • [32] A fuzzy regression based support vector machine (SVM) approach to fuzzy classification
    Chen, Yu
    Pedrycz, Witold
    Watada, Junzo
    ICIC Express Letters, 2010, 4 (6 B): : 2355 - 2362
  • [33] Clifford Fuzzy Support Vector Machine for Regression and Its Application in Electric Load Forecasting of Energy System (vol 9, 793078, 2021)
    Wang, Rui
    Xia, Xiaoyi
    Li, Yanping
    Cao, Wenming
    FRONTIERS IN ENERGY RESEARCH, 2022, 10
  • [34] Application of support vector regression for the prediction of concrete strength
    Lee, Jong Jae
    Kim, Doo Kie
    Chang, Seong Kyu
    Lee, Jang-Ho
    COMPUTERS AND CONCRETE, 2007, 4 (04): : 299 - 316
  • [35] Coal thickness prediction based on support vector machine regression
    Li Zhengwei
    Xia Shixiong
    Niuqiang
    Xia Zhanguo
    SNPD 2007: EIGHTH ACIS INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING, ARTIFICIAL INTELLIGENCE, NETWORKING, AND PARALLEL/DISTRIBUTED COMPUTING, VOL 2, PROCEEDINGS, 2007, : 379 - +
  • [36] Flight delay prediction using support vector machine regression
    Luo, Yun-Qian
    Chen, Zhi-Jie
    Tang, Jin-Hui
    Zhu, Yong-Wen
    Jiaotong Yunshu Xitong Gongcheng Yu Xinxi/Journal of Transportation Systems Engineering and Information Technology, 2015, 15 (01): : 143 - 149
  • [37] Prediction of Sweetness by Multilinear Regression Analysis and Support Vector Machine
    Zhong, Min
    Chong, Yang
    Nie, Xianglei
    Yan, Aixia
    Yuan, Qipeng
    JOURNAL OF FOOD SCIENCE, 2013, 78 (09) : S1445 - S1450
  • [38] Support vector machine regression for the prediction of maize hybrid performance
    Maenhout, S.
    De Baets, B.
    Haesaert, G.
    Van Bockstaele, E.
    THEORETICAL AND APPLIED GENETICS, 2007, 115 (07) : 1003 - 1013
  • [39] Support vector machine regression for volatile stock market prediction
    Yang, HQ
    Chan, LW
    King, I
    INTELLIGENT DATA ENGINEERING AND AUTOMATED LEARNING - IDEAL 2002, 2002, 2412 : 391 - 396
  • [40] Support vector machine regression for the prediction of maize hybrid performance
    S. Maenhout
    B. De Baets
    G. Haesaert
    E. Van Bockstaele
    Theoretical and Applied Genetics, 2007, 115 : 1003 - 1013