ON THE UNIQUE ERGODICITY FOR A CLASS OF 2 DIMENSIONAL STOCHASTIC WAVE EQUATIONS

被引:1
|
作者
Forlano, Justin [1 ,2 ]
Tolomeo, Leonardo [3 ,4 ]
机构
[1] Heriot Watt Univ, Dept Math, Edinburgh EH14 4AS, Scotland
[2] Univ Calif Los Angeles, Dept Math, Los Angeles, CA 90095 USA
[3] Univ Bonn, Math Inst, Hausdorff Ctr Math, Bonn, Germany
[4] Univ Edinburgh, Sch Math, Edinburgh, Scotland
基金
英国工程与自然科学研究理事会;
关键词
Stochastic nonlinear wave equation; ergodicity; invariant measure; white noise; GLOBAL WELL-POSEDNESS; NAVIER-STOKES EQUATIONS; CONVERGENCE; RATES; PDES;
D O I
10.1090/tran/8973
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the global-in-time dynamics for a stochastic semilinear wave equation with cubic defocusing nonlinearity and additive noise, posed on the 2-dimensional torus. The noise is taken to be slightly more regular than space-time white noise. In this setting, we show existence and uniqueness of an invariant measure for the Markov semigroup generated by the flow over an appropriately chosen Banach space. This extends a result of the second author [Comm. Math. Phys. 377 (2020), pp. 1311-1347] to a situation where the invariant measure is not explicitly known.
引用
收藏
页码:345 / 394
页数:50
相关论文
共 50 条
  • [21] Exponential ergodicity for retarded stochastic differential equations
    Bao, Jianhai
    Yin, George
    Yuan, Chenggui
    Wang, Le Yi
    APPLICABLE ANALYSIS, 2014, 93 (11) : 2330 - 2349
  • [22] Ergodicity for functional stochastic differential equations and applications
    Bao, Jianhai
    Yin, George
    Yuan, Chenggui
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2014, 98 : 66 - 82
  • [23] Ergodicity for nonlinear stochastic equations in variational formulation
    Barbu, V
    Prato, G
    APPLIED MATHEMATICS AND OPTIMIZATION, 2006, 53 (02): : 121 - 139
  • [24] NONEXPLOSION, BOUNDEDNESS, AND ERGODICITY FOR STOCHASTIC SEMILINEAR EQUATIONS
    DAPRATO, G
    ZABCZYK, J
    JOURNAL OF DIFFERENTIAL EQUATIONS, 1992, 98 (01) : 181 - 195
  • [25] ERGODICITY OF INFINITE SYSTEMS OF STOCHASTIC-EQUATIONS
    MALYSHEV, VA
    PODOROLSKII, VA
    TUROVA, TS
    MATHEMATICAL NOTES, 1989, 45 (3-4) : 318 - 325
  • [26] Ergodicity for Nonlinear Stochastic Equations in Variational Formulation
    Viorel Barbu
    Giuseppe Da Prato
    Applied Mathematics and Optimization, 2006, 53 : 121 - 139
  • [27] APPROXIMATE DYNAMICS OF A CLASS OF STOCHASTIC WAVE EQUATIONS WITH WHITE NOISE
    Chen, Guanggan
    Li, Qin
    Wei, Yunyun
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2022, 27 (01): : 73 - 101
  • [28] STOCHASTIC REGULATOR THEORY FOR A CLASS OF ABSTRACT WAVE-EQUATIONS
    BALAKRISHNAN, AV
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1991, 29 (06) : 1288 - 1299
  • [29] EXISTENCE OF WEAK SOLUTIONS FOR A CLASS OF SEMILINEAR STOCHASTIC WAVE EQUATIONS
    Marinelli, Carlo
    Quer-Sardanyons, Lluis
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2012, 44 (02) : 906 - 925
  • [30] Existence and ergodicity for the two-dimensional stochastic Allen-Cahn-Navier-Stokes equations
    Ngana, Aristide Ndongmo
    Medjo, Theodore Tachim
    ZEITSCHRIFT FUR ANALYSIS UND IHRE ANWENDUNGEN, 2024, 43 (1-2): : 1 - 48