Local Feature Search Network for Building and Water Segmentation of Remote Sensing Image

被引:31
|
作者
Ma, Zhanming [1 ]
Xia, Min [1 ]
Weng, Liguo [1 ]
Lin, Haifeng [2 ]
机构
[1] Nanjing Univ Informat Sci & Technol, Jiangsu Collaborat Innovat Ctr Atmospher Environm, Nanjing 210044, Peoples R China
[2] Nanjing Forestry Univ, Coll Informat Sci & Technol, Nanjing 210037, Peoples R China
基金
中国国家自然科学基金;
关键词
semantic segmentation; building and water segmentation; local feature search; horizontal direction; high-resolution remote sensing image;
D O I
10.3390/su15043034
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Extracting buildings and water bodies from high-resolution remote sensing images is of great significance for urban development planning. However, when studying buildings and water bodies through high-resolution remote sensing images, water bodies are very easy to be confused with the spectra of dark objects such as building shadows, asphalt roads and dense vegetation. The existing semantic segmentation methods do not pay enough attention to the local feature information between horizontal direction and position, which leads to the problem of misjudgment of buildings and loss of local information of water area. In order to improve this problem, this paper proposes a local feature search network (DFSNet) application in remote sensing image building and water segmentation. By paying more attention to the local feature information between horizontal direction and position, we can reduce the problems of misjudgment of buildings and loss of local information of water bodies. The discarding attention module (DAM) introduced in this paper reads sensitive information through direction and location, and proposes the slice pooling module (SPM) to obtain a large receptive field in the pixel by pixel prediction task through parallel pooling operation, so as to reduce the misjudgment of large areas of buildings and the edge blurring in the process of water body segmentation. The fusion attention up sampling module (FAUM) guides the backbone network to obtain local information between horizontal directions and positions in spatial dimensions, provide better pixel level attention for high-level feature maps, and obtain more detailed segmentation output. The experimental results of our method on building and water data sets show that compared with the existing classical semantic segmentation model, the proposed method achieves 2.89% improvement on the indicator MIoU, and the final MIoU reaches 83.73%.
引用
收藏
页数:22
相关论文
共 50 条
  • [21] JOINT FEATURE NETWORK FOR BRIDGE SEGMENTATION IN REMOTE SENSING IMAGES
    Cai, Jian
    Ma, Lei
    Li, Feimo
    Yang, Yiping
    IGARSS 2018 - 2018 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2018, : 2515 - 2518
  • [22] High Resolution Remote Sensing Water Image Segmentation Based on Dual Branch Network
    Zhang, Ziwen
    Li, Yang
    Liu, Qi
    Liu, Xiaodong
    2022 IEEE INTL CONF ON DEPENDABLE, AUTONOMIC AND SECURE COMPUTING, INTL CONF ON PERVASIVE INTELLIGENCE AND COMPUTING, INTL CONF ON CLOUD AND BIG DATA COMPUTING, INTL CONF ON CYBER SCIENCE AND TECHNOLOGY CONGRESS (DASC/PICOM/CBDCOM/CYBERSCITECH), 2022, : 556 - 561
  • [23] Remote sensing image segmentation based on local fractal dimension
    Department of Optical Engineering, Beijing Institute of Technology, Beijing 100081, China
    Guangdian Gongcheng, 2008, 1 (136-139):
  • [24] Local Deep Descriptor for Remote Sensing Image Feature Matching
    Dong, Yunyun
    Jiao, Weili
    Long, Tengfei
    Liu, Lanfa
    He, Guojin
    Gong, Chengjuan
    Guo, Yantao
    REMOTE SENSING, 2019, 11 (04)
  • [25] Multiscale feature U-Net for remote sensing image segmentation
    Wei, Youhua
    Liu, Xuzhi
    Lei, Jingxiong
    Yue, Ruihan
    Feng, Jun
    JOURNAL OF APPLIED REMOTE SENSING, 2022, 16 (01)
  • [26] Remote sensing image feature segmentation method based on deep learning
    Shen Yan-shan
    Wang A-chuan
    CHINESE JOURNAL OF LIQUID CRYSTALS AND DISPLAYS, 2021, 36 (05) : 733 - 740
  • [27] Remote sensing image semantic segmentation network based on multi-scale feature enhancement fusion
    Wang, Feiting
    Zhang, Yuan
    Hu, Qiongqiong
    Zhu, Yu
    GEOCARTO INTERNATIONAL, 2024, 39 (01)
  • [28] High-resolution remote sensing image semantic segmentation based on a deep feature aggregation network
    Wang, Zhen
    Guo, Jianxin
    Huang, Wenzhun
    Zhang, Shanwen
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2021, 32 (09)
  • [29] Context Aggregation Network for Remote Sensing Image Semantic Segmentation
    Zhang, Changxing
    Bai, Xiangyu
    Wang, Dapeng
    Zhou, KeXin
    INTERNATIONAL JOURNAL OF COMPUTATIONAL INTELLIGENCE AND APPLICATIONS, 2024, 23 (03)
  • [30] Improved SegFormer Remote Sensing Image Semantic Segmentation Network
    Zhang, Hao
    He, Lingmin
    Pan, Chen
    Computer Engineering and Applications, 2023, 59 (24) : 248 - 258