Sum of two strictly n-zero matrices

被引:0
|
作者
Gargate, Ivan G. [1 ]
Saenz, Edgar A. [1 ]
机构
[1] UTFPR, Campus Pato Branco,Rua Via Conhecimento km 01, BR-85503390 Pato Branco, PR, Brazil
来源
LINEAR & MULTILINEAR ALGEBRA | 2023年 / 71卷 / 15期
关键词
Strictly n-zero matrices; nilpotent matrices; Jordan forms;
D O I
10.1080/03081087.2022.2105786
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this work we investigate when an n x n Jordan matrix can be written as the sum of two strictly n-zero matrices. In particular, we show that if F is an algebraically closed field of characteristic zero and A is an n x n matrix over F with tr(A) = 0, then A is the sum of two strictly n-zero matrices.
引用
收藏
页码:2474 / 2483
页数:10
相关论文
共 50 条
  • [21] The sum of two quadratic matrices: Exceptional cases
    Pazzis, Clement de Seguins
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2022, 653 : 357 - 394
  • [22] Rings, Matrices over Which Are Representable As the Sum of Two Potent Matrices
    A. N. Abyzov
    D. T. Tapkin
    Russian Mathematics, 2023, 67 : 82 - 85
  • [23] Representations for the Drazin inverses of the sum of two matrices and some block matrices
    Bu, Changjiang
    Feng, Chengcheng
    Bai, Shuyan
    APPLIED MATHEMATICS AND COMPUTATION, 2012, 218 (20) : 10226 - 10237
  • [24] Some Formulas on the Drazin Inverse for the Sum of Two Matrices and Block Matrices
    Abdul Shakoor
    Ilyas Ali
    Samad Wali
    Abdur Rehman
    Bulletin of the Iranian Mathematical Society, 2022, 48 : 351 - 366
  • [25] Use of geometric algebra: compound matrices and the determinant of the sum of two matrices
    Prells, U
    Friswell, MI
    Garvey, SD
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2003, 459 (2030): : 273 - 285
  • [26] Rings, Matrices over Which Are Representable As the Sum of Two Potent Matrices
    Abyzov, A. N.
    Tapkin, D. T.
    RUSSIAN MATHEMATICS, 2023, 67 (12) : 82 - 85
  • [27] Some Formulas on the Drazin Inverse for the Sum of Two Matrices and Block Matrices
    Shakoor, Abdul
    Ali, Ilyas
    Wali, Samad
    Rehman, Abdur
    BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2022, 48 (02) : 351 - 366
  • [28] 'TWO-PERSON/ZERO-SUM'
    NEMEROV, H
    KENYON REVIEW, 1986, 8 (03): : 74 - 74
  • [29] Zero-sum triangles for involutory, idempotent, nilpotent and unipotent matrices
    Hao, Pengwei
    Zhang, Chao
    Hao, Huahan
    RESULTS IN APPLIED MATHEMATICS, 2022, 13
  • [30] On matrices in prescribed conjugacy classes with no common invariant subspace and sum zero
    Crawley-Boevey, W
    DUKE MATHEMATICAL JOURNAL, 2003, 118 (02) : 339 - 352