Enhanced characterization of functionally significant coronary lesions using machine learning techniques with radiomics-based analysis

被引:0
|
作者
Kalykakis, G. [1 ,2 ]
Driest, F. V. [3 ]
Broersen, A. [4 ]
Terentes-Printzios, D. [5 ]
Antonopoulos, A. [5 ]
Vlachichristou, N. Anousakis [1 ]
Liga, R. [6 ]
Visvikis, D. [7 ]
Scholte, A. [8 ]
Knuuti, J. [9 ]
Neglia, D. [10 ]
Anagnostopoulos, C. D. [1 ]
机构
[1] Biomed Res Fdn Acad Athens, Athens, Greece
[2] Ionio Univ, Corfu, Greece
[3] Leiden Univ, Med Ctr, Dept Cardiol, Leiden, Netherlands
[4] Univ Med Ctr, Div Image Proc, Leiden, Netherlands
[5] Hippocrat Gen Hosp Athens, Athens, Greece
[6] Univ Pisa, Pisa, Italy
[7] Univ Bretagne Occidentale, Brest, France
[8] Leiden Univ, Med Ctr, Leiden, Netherlands
[9] Turku Univ Hosp, Turku, Finland
[10] Inst Clin Physiol, Pisa, Italy
关键词
D O I
暂无
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
EPS-178
引用
收藏
页码:S273 / S274
页数:2
相关论文
共 50 条
  • [21] Radiomics-based machine learning and deep learning to predict serosal involvement in gallbladder cancer
    Shengnan Zhou
    Shaoqi Han
    Weijie Chen
    Xuesong Bai
    Weidong Pan
    Xianlin Han
    Xiaodong He
    Abdominal Radiology, 2024, 49 : 3 - 10
  • [22] Radiomics-based machine learning and deep learning to predict serosal involvement in gallbladder cancer
    Zhou, Shengnan
    Han, Shaoqi
    Chen, Weijie
    Bai, Xuesong
    Pan, Weidong
    Han, Xianlin
    He, Xiaodong
    ABDOMINAL RADIOLOGY, 2024, 49 (01) : 3 - 10
  • [23] Machine learning helps identifying relations and confounding factors in radiomics-based models
    Traverso, A.
    Kazmierski, M.
    Wee, L.
    Dekker, A.
    Welch, M.
    Hosni, A.
    Jaffray, D.
    Hope, A.
    RADIOTHERAPY AND ONCOLOGY, 2019, 133 : S162 - S163
  • [24] Radiomics-Based Machine Learning in Differentiation Between Glioblastoma and Metastatic Brain Tumors
    Chen, Chaoyue
    Ou, Xuejin
    Wang, Jian
    Guo, Wen
    Ma, Xuelei
    FRONTIERS IN ONCOLOGY, 2019, 9
  • [25] Comparison of MRI Sequences to Predict IDH Mutation Status in Gliomas Using Radiomics-Based Machine Learning
    Kasap, Dilek N. G.
    Mora, Nabila Gala Nacul
    Bloemer, David A.
    Akkurt, Burak Han
    Heindel, Walter Leonhard
    Mannil, Manoj
    Musigmann, Manfred
    BIOMEDICINES, 2024, 12 (04)
  • [26] OPTIMIZED RADIOMICS-BASED MACHINE LEARNING APPROACH FOR LUNG CANCER SUBTYPE CLASSIFICATION
    Jacob, Chinnu
    Gopakumar, C.
    Nazarudeen, Fathima
    BIOMEDICAL ENGINEERING-APPLICATIONS BASIS COMMUNICATIONS, 2023, 35 (05):
  • [27] Radiomics-based Machine Learning to Predict the Recurrence of Hepatocellular Carcinoma: A Systematic Review and Meta-analysis
    Jin, Jin
    Jiang, Ying
    Zhao, Yu -Lan
    Huang, Pin -Tong
    ACADEMIC RADIOLOGY, 2024, 31 (02) : 467 - 479
  • [28] Machine Learning and Radiomics-based Classification of Thyroid Disease Using 99mTc-Pertechnetate Scintigraphy
    Sabouri, Maziar
    Avval, Atlas Haddadi
    Bagheri, Soroush
    Asadzadeh, Azin
    Sehati, Mohaddese
    Mogharrabi, Mahdi
    Arefnia, Maryam
    Yousefirizi, Fereshteh
    Hajianfar, Ghasem
    Zaidi, Habib
    Rahmim, Arman
    JOURNAL OF NUCLEAR MEDICINE, 2024, 65
  • [29] Prediction of unenhanced lesion evolution in multiple sclerosis using radiomics-based models: a machine learning approach
    Peng Yuling
    Zheng Yineng
    Tan Zeyun
    Liu Junhang
    Xiang Yayun
    Liu Huan
    Dai Linquan
    Xie Yanjun
    Wang Jingjie
    Zeng Chun
    Li, Yongmei
    MULTIPLE SCLEROSIS AND RELATED DISORDERS, 2021, 53
  • [30] CT Angiographic and Plaque Predictors of Functionally Significant Coronary Disease and Outcome Using Machine Learning
    Yang, Seokhun
    Koo, Bon-Kwon
    Hoshino, Masahiro
    Lee, Joo Myung
    Murai, Tadashi
    Park, Jiesuck
    Zhang, Jinlong
    Hwang, Doyeon
    Shin, Eun-Seok
    Doh, Joon-Hyung
    Nam, Chang-Wook
    Wang, Jianan
    Chen, Shaoliang
    Tanaka, Nobuhiro
    Matsuo, Hitoshi
    Akasaka, Takashi
    Choi, Gilwoo
    Petersen, Kersten
    Chang, Hyuk-Jae
    Kakuta, Tsunekazu
    Narula, Jagat
    JACC-CARDIOVASCULAR IMAGING, 2021, 14 (03) : 629 - 641