Binary all-polymer solar cells with efficiency over 17% by fine-tuning halogenated thiophene linkers of polymer acceptors

被引:5
|
作者
Zhang, Zhe [1 ,2 ,3 ]
Li, Zhixiang [1 ,2 ,3 ]
Kan, Bin [4 ]
Chen, Tianqi [4 ]
Zhang, Yunxin [4 ]
Wang, Peiran [1 ,2 ,3 ]
Yao, Zhaoyang [1 ,2 ,3 ]
Li, Chenxi [1 ,2 ,3 ]
Zhao, Bin [5 ]
Li, Miaomiao [5 ]
Duan, Tainan [6 ]
Wan, Xiangjian [1 ,2 ,3 ]
Chen, Yongsheng [1 ,2 ,3 ]
机构
[1] Nankai Univ, Coll Chem, State Key Lab, Tianjin 300071, Peoples R China
[2] Nankai Univ, Inst Elementoorgan Chem, Coll Chem, Ctr Nanoscale Sci & Technol, Tianjin 300071, Peoples R China
[3] Nankai Univ, Coll Chem, Renewable Energy Convers & Storage Ctr RECAST, Key Lab Funct Polymer Mat, Tianjin 300071, Peoples R China
[4] Nankai Univ, Natl Inst Adv Mat, Sch Mat Sci & Engn, Tianjin 300350, Peoples R China
[5] Tianjin Univ, Sch Mat Sci & Engn, Tianjin Key Lab Mol Optoelect Sci, Tianjin 300072, Peoples R China
[6] Chinese Acad Sci, Univ Chinese Acad Sci UCAS Chongqing, Chongqing Inst Green & Intelligent Technol, Chongqing Sch, Chongqing, Peoples R China
关键词
Polymer acceptor; Halogenated thiophene; High-performance; Flexible; PERFORMANCE;
D O I
10.1016/j.nanoen.2023.108766
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
All-polymer solar cells (APSCs) have achieved significant advances because of the rising of polymerized small molecular acceptors (PSMAs). While, the effect of halogen atoms on PSMAs in linkers has not been systematically studied. Herein, three PSMAs of PZC1, PZC2, and PZC3 are designed and synthesized by introducing fluorine and chlorine atom on the linkers to fine-tune their optoelectronic and molecular packing properties. Both halogenated polymer acceptors exhibit a slightly blue-shifted absorption range as well as deeper-lying frontier energy levels. When compared with non-halogenated PZC1, the fluorinated polymer acceptor (PZC2) presents better coplanar and rigid molecular conformation. The 3,4-dichlorothiophene-based polymer acceptor (PZC3) displays a distinctly twisted molecular chain between terminal groups and 3,4-dichlorothiophene owing to the steric hindrance between chlorine (Cl) and hydrogen (H) atoms. Due to the optimal morphologies in PM6:PZC2 film, the corresponding devices exhibit an excellent PCE of 17.30%, superior to those of PM6:PZC1 (13.83%) and PM6:PZC3 (15.75%) based devices. The mechanical robustness of three blend films is further investigated. PZC2based films exhibit outstanding mechanical flexibility. Afterwards, the PM6:PZC2-based flexible devices achieve a PCE of 14.24%. Our results demonstrate that the usage of halogenated thiophene offers a practical way to finetune the performance of APSCs.
引用
收藏
页数:9
相关论文
共 50 条
  • [41] Active Layer Morphology Engineering of All-polymer Solar Cells by Systematically Tuning Molecular Weights of Polymer Donors/Acceptors
    Ning Wang
    Ying-Jian Yu
    Ru-Yan Zhao
    Ji-Dong Zhang
    Jun Liu
    Li-Xiang Wang
    Chinese Journal of Polymer Science, 2021, 39 (11) : 1449 - 1458
  • [42] 8.0% Efficient all-polymer solar cells based on novel starburst polymer acceptors
    Kang Li
    Ruihao Xie
    Wenkai Zhong
    Kaiwen Lin
    Lei Ying
    Fei Huang
    Yong Cao
    Science China Chemistry, 2018, (05) : 576 - 583
  • [43] 8.0% Efficient all-polymer solar cells based on novel starburst polymer acceptors
    Li, Kang
    Xie, Ruihao
    Zhong, Wenkai
    Lin, Kaiwen
    Ying, Lei
    Huang, Fei
    Cao, Yong
    SCIENCE CHINA-CHEMISTRY, 2018, 61 (05) : 576 - 583
  • [44] Polymer acceptors based on Y6 derivatives for all-polymer solar cells
    Fan, Qunping
    Xiao, Zuo
    Wang, Ergang
    Ding, Liming
    SCIENCE BULLETIN, 2021, 66 (19) : 1950 - 1953
  • [45] Isomeric Monomer Engineering of Regioregular Polymer Acceptors for Efficient All-Polymer Solar Cells
    Cui, Naizhe
    Li, Xiaoxiao
    Yang, Hang
    Feng, Jun
    Hu, Kewei
    Jiang, Xinyu
    Fan, Hongyu
    Wu, Yue
    Cui, Chaohua
    ACS APPLIED POLYMER MATERIALS, 2024, 6 (04) : 2223 - 2231
  • [46] Benzotriazole-based Polymer Acceptors with Precise Structures for All-polymer Solar Cells
    Zhang Yue
    Wu Baoqi
    Tian Shizeng
    Huang Xuelong
    Li Junyu
    Pan Langheng
    Huang Fei
    Cao Yong
    Duan Chunhui
    CHEMICAL JOURNAL OF CHINESE UNIVERSITIES-CHINESE, 2023, 44 (07):
  • [47] 8.0% Efficient all-polymer solar cells based on novel starburst polymer acceptors
    Kang Li
    Ruihao Xie
    Wenkai Zhong
    Kaiwen Lin
    Lei Ying
    Fei Huang
    Yong Cao
    Science China(Chemistry), 2018, 61 (05) : 576 - 583
  • [48] Naphthalene diimide-difluorobenzene-based polymer acceptors for all-polymer solar cells
    Deng, Ping
    Ho, Carr Hoi Yi
    Lu, Yong
    Li, Ho-Wa
    Tsang, Sai-Wing
    So, Shu Kong
    Ong, Beng S.
    CHEMICAL COMMUNICATIONS, 2017, 53 (22) : 3249 - 3252
  • [49] 8.0% Efficient all-polymer solar cells based on novel starburst polymer acceptors
    Kang Li
    Ruihao Xie
    Wenkai Zhong
    Kaiwen Lin
    Lei Ying
    Fei Huang
    Yong Cao
    Science China Chemistry, 2018, 61 : 576 - 583
  • [50] 17.87% Efficiency All-Polymer Tandem Solar Cell Enabled by Complementary Absorbing Polymer Acceptors
    Ma, Qing
    Jia, Zhenrong
    Meng, Lei
    Yang, Hang
    Zhang, Jinyuan
    Lai, Wenbin
    Guo, Jing
    Jiang, Xin
    Cui, Chaohua
    Li, Yongfang
    ADVANCED FUNCTIONAL MATERIALS, 2023, 33 (06)