RNA contact prediction by data efficient deep learning

被引:1
|
作者
Taubert, Oskar [1 ]
von der Lehr, Fabrice [2 ]
Bazarova, Alina [3 ,4 ]
Faber, Christian [3 ]
Knechtges, Philipp [2 ,4 ]
Weiel, Marie [1 ,4 ]
Debus, Charlotte [1 ,4 ]
Coquelin, Daniel [1 ,4 ]
Basermann, Achim [2 ]
Streit, Achim [1 ]
Kesselheim, Stefan [3 ,4 ]
Goetz, Markus [1 ,4 ]
Schug, Alexander [3 ,5 ]
机构
[1] Karlsruhe Inst Technol, Steinbuch Ctr Comp SCC, D-76344 Eggenstein Leopoldshafen, Germany
[2] German Aerosp Ctr DLR, Inst Software Technol SC, D-51147 Cologne, Germany
[3] Forschungszentrum Julich, Julich Supercomp Ctr, D-52428 Julich, Germany
[4] Helmholtz Al, D-81675 Munich, Germany
[5] Univ Duisburg Essen, Fac Biol, D-45117 Essen, Germany
关键词
DIRECT-COUPLING ANALYSIS; SECONDARY STRUCTURE; PROTEIN; SEQUENCE; COVERAGE;
D O I
10.1038/s42003-023-05244-9
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
On the path to full understanding of the structure-function relationship or even design of RNA, structure prediction would offer an intriguing complement to experimental efforts. Any deep learning on RNA structure, however, is hampered by the sparsity of labeled training data. Utilizing the limited data available, we here focus on predicting spatial adjacencies ("contact maps") as a proxy for 3D structure. Our model, BARNACLE, combines the utilization of unlabeled data through self-supervised pre-training and efficient use of the sparse labeled data through an XGBoost classifier. BARNACLE shows a considerable improvement over both the established classical baseline and a deep neural network. In order to demonstrate that our approach can be applied to tasks with similar data constraints, we show that our findings generalize to the related setting of accessible surface area prediction. BARNACLE improves RNA contact prediction with limited labeled data, and such contacts can be used as restraints in RNA structure prediction.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] RNA contact prediction by data efficient deep learning
    Oskar Taubert
    Fabrice von der Lehr
    Alina Bazarova
    Christian Faber
    Philipp Knechtges
    Marie Weiel
    Charlotte Debus
    Daniel Coquelin
    Achim Basermann
    Achim Streit
    Stefan Kesselheim
    Markus Götz
    Alexander Schug
    [J]. Communications Biology, 6
  • [2] Leveraging data-efficient RNA contact prediction toward reliable RNA structure prediction
    Schug, Alexander
    Taubert, Oskar
    Faber, Christian
    Upadhyay, Utkarsh
    [J]. BIOPHYSICAL JOURNAL, 2024, 123 (03) : 453A - 453A
  • [3] Traffic Data Imputation and Prediction: An Efficient Realization of Deep Learning
    Zhao, Junhui
    Nie, Yiwen
    Ni, Shanjin
    Sun, Xiaoke
    [J]. IEEE ACCESS, 2020, 8 : 46713 - 46722
  • [4] Deep learning boosts RNA prediction
    Pan, Jie
    [J]. NATURE COMPUTATIONAL SCIENCE, 2021, 1 (09): : 564 - 564
  • [5] Deep learning boosts RNA prediction
    Jie Pan
    [J]. Nature Computational Science, 2021, 1 : 564 - 564
  • [6] Data-Efficient Communication Traffic Prediction With Deep Transfer Learning
    Li, Hang
    Wang, Ju
    Chen, Xi
    Liu, Xue
    Dudek, Gregory
    [J]. IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS (ICC 2022), 2022, : 3190 - 3195
  • [7] Data-Efficient Model Learning and Prediction for Contact-Rich Manipulation Tasks
    Khader, Shahbaz Abdul
    Yin, Hang
    Falco, Pietro
    Kragic, Danica
    [J]. IEEE ROBOTICS AND AUTOMATION LETTERS, 2020, 5 (03): : 4321 - 4328
  • [8] Hybrid deep learning model for efficient prediction of telecom data using EMF radiation
    Karthiga, S.
    Abirami, A. M.
    [J]. JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2023, 44 (03) : 4257 - 4272
  • [9] Big data and deep learning for RNA biology
    Hwang, Hyeonseo
    Jeon, Hyeonseong
    Yeo, Nagyeong
    Baek, Daehyun
    [J]. EXPERIMENTAL AND MOLECULAR MEDICINE, 2024, 56 (06): : 1293 - 1321
  • [10] Deep Learning with Multimodal Data for Prediction of Glaucoma
    Chen, Jimmy
    Fan, Rui
    Christopher, Mark
    Belghith, Akram
    Bowd, Christopher
    Goldbaum, Michael
    Fazio, Massimo
    Girkin, Christopher
    De Moraes, Gustavo
    Liebmann, Jeffrey
    Zangwill, Linda
    [J]. INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2023, 64 (09)