Data-Efficient Model Learning and Prediction for Contact-Rich Manipulation Tasks

被引:14
|
作者
Khader, Shahbaz Abdul [1 ,2 ]
Yin, Hang [1 ]
Falco, Pietro [3 ]
Kragic, Danica [1 ]
机构
[1] KTH, EECS, RPL, S-10044 Stockholm, Sweden
[2] ABB Future Labs, CH-5405 Baden, Switzerland
[3] ABB Corp Res, S-72178 Vasteras, Sweden
来源
关键词
Model learning for control; contact modeling; reinforcement learning; INFERENCE; MIXTURES;
D O I
10.1109/LRA.2020.2996067
中图分类号
TP24 [机器人技术];
学科分类号
080202 ; 1405 ;
摘要
In this letter, we investigate learning forward dynamics models and multi-step prediction of state variables (long-term prediction) for contact-rich manipulation. The problems are formulated in the context of model-based reinforcement learning (MBRL). We focus on two aspects-discontinuous dynamics and data-efficiency-both of which are important in the identified scope and pose significant challenges to State-of-the-Art methods. We contribute to closing this gap by proposing a method that explicitly adopts a specific hybrid structure for the model while leveraging the uncertainty representation and data-efficiency of Gaussian process. Our experiments on an illustrative moving block task and a 7-DOF robot demonstrate a clear advantage when compared to popular baselines in low data regimes.
引用
收藏
页码:4321 / 4328
页数:8
相关论文
共 50 条
  • [1] Learning Dense Rewards for Contact-Rich Manipulation Tasks
    Wu, Zheng
    Lian, Wenzhao
    Unhelkar, Vaibhav
    Tomizuka, Masayoshi
    Schaal, Stefan
    [J]. 2021 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA 2021), 2021, : 6214 - 6221
  • [2] Residual Feedback Learning for Contact-Rich Manipulation Tasks with Uncertainty
    Ranjbar, Alireza
    Vien, Ngo Anh
    Ziesche, Hanna
    Boedecker, Joschka
    Neumann, Gerhard
    [J]. 2021 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2021, : 2383 - 2390
  • [3] A review on reinforcement learning for contact-rich robotic manipulation tasks
    Elguea-Aguinaco, Inigo
    Serrano-Munoz, Antonio
    Chrysostomou, Dimitrios
    Inziarte-Hidalgo, Ibai
    Bogh, Simon
    Arana-Arexolaleiba, Nestor
    [J]. ROBOTICS AND COMPUTER-INTEGRATED MANUFACTURING, 2023, 81
  • [4] Learning Tool Morphology for Contact-Rich Manipulation Tasks with Differentiable Simulation
    Li, Mengxi
    Antonova, Rika
    Sadigh, Dorsa
    Bohg, Jeannette
    [J]. 2023 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION, ICRA, 2023, : 1859 - 1865
  • [5] Symbolic State Estimation with Predicates for Contact-Rich Manipulation Tasks
    Migimatsu, Toki
    Lian, Wenzhao
    Bohg, Jeannette
    Schaal, Stefan
    [J]. 2022 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA 2022), 2022, : 1702 - 1709
  • [6] Variable Impedance Skill Learning for Contact-Rich Manipulation
    Yang, Quantao
    Durr, Alexander
    Topp, Elin Anna
    Stork, Johannes A.
    Stoyanov, Todor
    [J]. IEEE ROBOTICS AND AUTOMATION LETTERS, 2022, 7 (03): : 8391 - 8398
  • [7] Safe Data-Driven Contact-Rich Manipulation
    Mitsioni, Ioanna
    Tajvar, Pomia
    Kragic, Danica
    Tumova, Jana
    Pek, Christian
    [J]. PROCEEDINGS OF THE 2020 IEEE-RAS 20TH INTERNATIONAL CONFERENCE ON HUMANOID ROBOTS (HUMANOIDS 2020), 2021, : 120 - 127
  • [8] Seeing All the Angles: Learning Multiview Manipulation Policies for Contact-Rich Tasks from Demonstrations
    Ablett, Trevor
    Zhai, Yifan
    Kelly, Jonathan
    [J]. 2021 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2021, : 7843 - 7850
  • [9] Learning Force Control for Contact-Rich Manipulation Tasks With Rigid Position-Controlled Robots
    Beltran-Hernandez, Cristian Camilo
    Petit, Damien
    Ramirez-Alpizar, Ixchel Georgina
    Nishi, Takayuki
    Kikuchi, Shinichi
    Matsubara, Takamitsu
    Harada, Kensuke
    [J]. IEEE ROBOTICS AND AUTOMATION LETTERS, 2020, 5 (04): : 5709 - 5716
  • [10] An Open Tele-Impedance Framework to Generate Data for Contact-Rich Tasks in Robotic Manipulation
    Giammarino, Alberto
    Gandarias, Juan M.
    Ajoudani, Arash
    [J]. 2023 IEEE INTERNATIONAL CONFERENCE ON ADVANCED ROBOTICS AND ITS SOCIAL IMPACTS, ARSO, 2023, : 140 - 146