Dibutyl phthalate induces epithelial-mesenchymal transition of renal tubular epithelial cells via the Ang II/AMPKα2/Cx43 signaling pathway

被引:0
|
作者
Xie, Zhiwen [1 ]
Zhang, Yongqing [1 ]
Sun, Wenlan [2 ]
Hua, Shan [1 ]
Han, Bangmin [1 ]
Jiang, Juntao [1 ]
Zhu, Yingjian [3 ]
Jing, Yifeng [1 ]
机构
[1] Shanghai Jiao Tong Univ, Shanghai Gen Hosp, Dept Urol, Sch Med, Shanghai 200080, Peoples R China
[2] Nanjing Med Univ, Dept Geriatr, Shanghai Gen Hosp, Shanghai 200080, Peoples R China
[3] Nanjing Med Univ, Dept Urol, Jiading Branch, Shanghai Gen Hosp, Shanghai 201803, Peoples R China
关键词
Renal fibrosis; Dibutyl phthalate; Connexin; 43; Epithelial-mesenchymal transition; Renal tubular epithelial cells; CONNEXIN-43; EXPOSURE; FIBROSIS; PROGRESSION; EXPRESSION;
D O I
10.1016/j.tox.2023.153584
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
Maternal exposure to dibutyl phthalate (DBP) induces renal fibrosis in offspring. However, the specific roles of connexin 43 (Cx43) in DBP-induced renal fibrosis remain unknown. Therefore, in this study, we analysed the expression of Cx43 in renal tubular epithelial cells (RTECs) with or without DBP exposure using reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and western blotting. A small interfering RNA against Cx43 was introduced to assess its role in epithelial-mesenchymal transition (EMT) of RTECs caused by 100 mu mol/L DBP. Bioinformatics analysis was conducted with AMP-activated protein kinase (AMPK)-alpha 2 and angiotensin (Ang) II inhibitors to determine the mechanisms involved in the expression of Cx43 in HK-2 cells. RTqPCR and western blotting revealed that DBP increased the expression of Cx43 in vitro. Moreover, Cx43 knockdown significantly alleviated DBP-induced EMT caused by DBP in HK-2 cells. Bioinformatics analysis with AMPK alpha 2 and Ang II inhibitors revealed that DBP upregulated Cx43 expression by activating the Ang II/AMPK alpha 2 signaling pathway. Our findings indicate that DBP induces renal fibrosis by activating Ang II/AMPK alpha 2/Cx43 signaling pathway and EMT in RETCs, suggesting a potential target for the treatment of renal fibrosis.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] Epithelial-Mesenchymal Transition Induces Podocalyxin to Promote Extravasation via Ezrin Signaling
    Froese, Julia
    Chen, Michelle B.
    Hebron, Katie E.
    Reinhardt, Ferenc
    Hajal, Cynthia
    Zijlstra, Andries
    Kamm, Roger D.
    Weinberg, Robert A.
    CELL REPORTS, 2018, 24 (04): : 962 - 972
  • [22] β2-microglobulin induces epithelial-mesenchymal transition in human renal proximal tubule epithelial cells in vitro
    Aiqing Zhang
    Bin Wang
    Min Yang
    Huimin Shi
    Weihua Gan
    BMC Nephrology, 16
  • [23] β2-microglobulin induces epithelial-mesenchymal transition in human renal proximal tubule epithelial cells in vitro
    Zhang, Aiqing
    Wang, Bin
    Yang, Min
    Shi, Huimin
    Gan, Weihua
    BMC NEPHROLOGY, 2015, 16
  • [24] Overexpression of E2A proteins induces epithelial-mesenchymal transition in human renal proximal tubular epithelial cells suggesting a potential role in renal fibrosis
    Slattery, Craig
    McMorrow, Tara
    Ryan, Michael P.
    FEBS LETTERS, 2006, 580 (17) : 4021 - 4030
  • [25] Serum response factor provokes epithelial-mesenchymal transition in renal tubular epithelial cells of diabetic nephropathy
    Zhao, Long
    Chi, Lingzhen
    Zhao, Jun
    Wang, Xueling
    Chen, Zhixin
    Meng, Linghang
    Liu, Gang
    Guan, Guangju
    Wang, Fei
    PHYSIOLOGICAL GENOMICS, 2016, 48 (08) : 580 - 588
  • [26] Role of microRNA-29b in angiotensin II-induced epithelial-mesenchymal transition in renal tubular epithelial cells
    Pan, Jialin
    Zhang, Juhong
    Zhang, Xingwei
    Zhou, Xi
    Lu, Shengyue
    Huang, Xiaoyan
    Shao, Jiayu
    Lou, Guoqiang
    Yang, Deye
    Geng, Yong-Jian
    INTERNATIONAL JOURNAL OF MOLECULAR MEDICINE, 2014, 34 (05) : 1381 - 1387
  • [27] The Role of the p38 MAPK Signaling Pathway in High Glucose-Induced Epithelial-Mesenchymal Transition of Cultured Human Renal Tubular Epithelial Cells
    Lv, Zhi-Mei
    Wang, Qun
    Wan, Qiang
    Lin, Jian-Gong
    Hu, Meng-Si
    Liu, You-Xia
    Wang, Rong
    PLOS ONE, 2011, 6 (07):
  • [28] Astragaloside IV Alleviates Renal Tubular Epithelial-Mesenchymal Transition via CX3CL1-RAF/MEK/ERK Signaling Pathway in Diabetic Kidney Disease
    Hu, Yonghui
    Tang, Wangna
    Liu, Wenjie
    Hu, Zhibo
    Pan, Congqing
    DRUG DESIGN DEVELOPMENT AND THERAPY, 2022, 16 : 1605 - 1620
  • [29] GIMAP7 inhibits epithelial-mesenchymal transition and glycolysis in lung adenocarcinoma cells via regulating the Smo/AMPK signaling pathway
    Cui, Liyuan
    Shen, Yumei
    Duan, Shanzhou
    Ding, Qifeng
    Wang, Yifei
    Yang, Wentao
    Chen, Yongbing
    THORACIC CANCER, 2024, 15 (04) : 286 - 298