Sulfite pretreatment enhances the medium-chain fatty acids production from waste activated sludge anaerobic fermentation

被引:10
|
作者
Li, Xuan [1 ]
Liu, Huan [1 ]
Zhang, Zehao [1 ]
Zhou, Ting [1 ]
Wang, Qilin [1 ]
机构
[1] Univ Technol Sydney, Ctr Technol Water & Wastewater, Sch Civil & Environm Engn, Ultimo, NSW 2007, Australia
基金
澳大利亚研究理事会;
关键词
Sulfite; Medium chain fatty acids; Anaerobic fermentation; Waste activated sludge; Sulfite wastes; METHANE PRODUCTION; WATER; HYDROGEN;
D O I
10.1016/j.scitotenv.2023.162080
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Production of high-value medium chain fatty acids (MCFAs) from anaerobic fermentation of waste activated sludge (WAS) has been considered as a promising alternative for renewable energy resources. However, the low biodegradability of WAS greatly limits the anaerobic fermentation performance. This study proposed and demonstrated a novel approach, sulfite pretreatment, to efficiently produce MCFAs through anaerobic fermentation of WAS. Pretreatment of WAS at a sulfite concentration of 100-500 mg S/L for 24 h effectively improved the MCFAs production and MCFAs selectivity and the promotion effect was positively correlated with the sulfite concentration used in pretreatment (Pearson's R > 0.9). The maximum MCFAs production of 6.84 g COD/L and MCFAs selectivity of 39.1 % were both achieved under 500 mg S/L sulfite pretreatment, which accounts for 2.6 times and 2.4 times of the control, respectively (MCFAs production of 2.62 g COD/L and MCFAs selectivity of 16.4 % in the control). Sulfite pretreatment also enhanced the WAS degradation from 25 +/- 2 % in the control to a maximum of 39 +/- 2 % under 500 mg S/L sulfite pretreatment. The electron transfer efficiency and COD flows from the substrate to products were enhanced by up to 25 % due to the sulfite pretreatment, which supports the enhanced WAS degradation. Sulfite pretreatment also promoted the solubilization, hydrolysis, and acidification processes during the anaerobic fermentation by up to 200 %, 60 %, and 45 %, respectively, which subsequently makes more substrates available for MCFAs production. The findings from this study provide a potential solution of using industrial sulfite-laden wastes for WAS pretreatment, to enhance the MCFAs production at a minimized cost.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] Cetyltrimethylammonium Bromide Enhances Anaerobic Fermentative Production of Short-Chain Fatty Acids from Waste Activated Sludge
    Li, Chenxi
    Li, Zijing
    Liu, Xuran
    Du, Mingting
    He, Dandan
    Fu, Qizi
    Pan, Min
    Leu, Shao-Yuan
    Wang, Dongbo
    ACS ES&T ENGINEERING, 2023, 3 (11): : 2051 - 2061
  • [22] In-situ sulfite treatment enhanced the production of short-chain fatty acids from waste activated sludge in the side-stream anaerobic fermentation
    Chen, Wei
    Zhang, Dandan
    Luo, Xi
    Wang, Jiale
    Xu, Qi
    Lu, Xiejuan
    Mao, Juan
    Song, Hongjiao
    Wu, Xiaohui
    Zan, Feixiang
    BIORESOURCE TECHNOLOGY, 2023, 370
  • [23] Enhanced medium-chain fatty acid production from sewage sludge by combined electro-fermentation and anaerobic fermentation
    Sun, Xiaoyan
    Chen, Hui
    Cui, Ting
    Zhao, Lei
    Wang, Cheng
    Zhu, Xuejun
    Yang, Tao
    Yin, Yanan
    BIORESOURCE TECHNOLOGY, 2024, 404
  • [24] Phosphorus and short-chain fatty acids recovery from waste activated sludge by anaerobic fermentation: Effect of acid or alkali pretreatment
    Wu, Liang
    Zhang, Cheng
    Hu, Hui
    Liu, Jianyong
    Duan, Tengfei
    Luo, Jinghuan
    Qian, Guangren
    BIORESOURCE TECHNOLOGY, 2017, 240 : 192 - 196
  • [25] Clarifying the Role of Free Ammonia in the Production of Short-Chain Fatty Acids from Waste Activated Sludge Anaerobic Fermentation
    Zhao, Jianwei
    Liu, Yiwen
    Wang, Yali
    Lian, Yu
    Wang, Qilin
    Yang, Qi
    Wang, Dongbo
    Xie, Guo-Jun
    Zeng, Guangming
    Sun, Yingjie
    Li, Xiaoming
    Ni, Bing-Jie
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2018, 6 (11): : 14104 - 14113
  • [26] Thiosulfate pretreatment enhancing short-chain fatty acids production from anaerobic fermentation of waste activated sludge: Performance, metabolic activity and microbial community
    Cheng, Boyi
    Wang, Yayi
    Zhang, Da
    Wu, Di
    Zan, Feixiang
    Ma, Jie
    Miao, Lei
    Wang, Zongping
    Chen, Guanghao
    Guo, Gang
    WATER RESEARCH, 2023, 238
  • [27] An efficient and green pretreatment to stimulate short-chain fatty acids production from waste activated sludge anaerobic fermentation using free nitrous acid
    Li, Xiaoming
    Zhao, Jianwei
    Wang, Dongbo
    Yang, Qi
    Xu, Qiuxiang
    Deng, Yongchao
    Yang, Weiqiang
    Zeng, Guangming
    CHEMOSPHERE, 2016, 144 : 160 - 167
  • [28] Enhancing medium-chain fatty acids production via alkyl polyglucose modulation of electron acceptor generation, microbial community and metabolic traits in anaerobic fermentation of waste activated sludge
    Zhou, Chun-shuang
    Cao, Guang-li
    Liu, Bing-feng
    Xie, Guo-jun
    Ma, Wan-li
    Fan, Sheng-qiang
    Ren, Nan-qi
    Chemical Engineering Journal, 2024, 499
  • [29] Co-fermentation of sewage sludge and lignocellulosic biomass for production of medium-chain fatty acids
    Yin, Yanan
    Hu, Yuming
    Wang, Jianlong
    Bioresource Technology, 2022, 361
  • [30] Co-fermentation of sewage sludge and lignocellulosic biomass for production of medium-chain fatty acids
    Yin, Yanan
    Hu, Yuming
    Wang, Jianlong
    BIORESOURCE TECHNOLOGY, 2022, 361