Automated Red Deer Algorithm with Deep Learning Enabled Hyperspectral Image Classification

被引:0
|
作者
Chellapraba, B. [1 ]
Manohari, D. [2 ]
Periyakaruppan, K. [3 ]
Kavitha, M. S. [4 ]
机构
[1] Karpagam Inst Technol, Dept Informat Technol, Coimbatore 641032, Tamil Nadu, India
[2] St Josephs Inst Technol, Dept Comp Sci & Engn, Chennai 600119, Tamil Nadu, India
[3] SNS Coll Engn, Dept Comp Sci & Engn, Coimbatore 641107, Tamil Nadu, India
[4] SNS Coll Technol, Dept Comp Sci & Engn, Coimbatore 641035, Tamil Nadu, India
来源
关键词
Hyperspectral images; image classification; deep learning; adagrad optimizer; nasnetlarge model; red deer algorithm; NETWORK; FUSION;
D O I
10.32604/iasc.2023.029923
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Hyperspectral (HS) image classification is a hot research area due to challenging issues such as existence of high dimensionality, restricted training data, etc. Precise recognition of features from the HS images is important for effective classification outcomes. Additionally, the recent advancements of deep learning (DL) models make it possible in several application areas. In addition, the performance of the DL models is mainly based on the hyperparameter setting which can be resolved by the design of metaheuristics. In this view, this article develops an automated red deer algorithm with deep learning enabled hyperspectral image (HSI) classification (RDADL-HIC) technique. The proposed RDADLHIC technique aims to effectively determine the HSI images. In addition, the RDADL-HIC technique comprises a NASNetLarge model with Adagrad optimizer. Moreover, RDA with gated recurrent unit (GRU) approach is used for the identification and classification of HSIs. The design of Adagrad optimizer with RDA helps to optimally tune the hyperparameters of the NASNetLarge and GRU models respectively. The experimental results stated the supremacy of the RDADL-HIC model and the results are inspected interms of different measures. The comparison study of the RDADL-HIC model demonstrated the enhanced performance over its recent state of art approaches.
引用
收藏
页码:2353 / 2366
页数:14
相关论文
共 50 条
  • [31] Deep Few-Shot Learning for Hyperspectral Image Classification
    Liu, Bing
    Yu, Xuchu
    Yu, Anzhu
    Zhang, Pengqiang
    Wan, Gang
    Wang, Ruirui
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2019, 57 (04): : 2290 - 2304
  • [32] Combining Unmixing and Deep Feature Learning for Hyperspectral Image Classification
    Alam, Fahim Irfan
    Zhou, Jun
    Tong, Lei
    Liew, Alan Wee-Chung
    Gao, Yongsheng
    2017 INTERNATIONAL CONFERENCE ON DIGITAL IMAGE COMPUTING - TECHNIQUES AND APPLICATIONS (DICTA), 2017, : 733 - 740
  • [33] Semi-supervised deep learning for hyperspectral image classification
    Kang, Xudong
    Zhuo, Binbin
    Duan, Puhong
    REMOTE SENSING LETTERS, 2019, 10 (04) : 353 - 362
  • [34] Deep Residual Prototype Learning Network for Hyperspectral Image Classification
    Liu, Yu
    Su, Mingrui
    Liu, Lu
    Li, Chunchao
    Peng, Yuanxi
    Hou, Jing
    Jiang, Tian
    SECOND TARGET RECOGNITION AND ARTIFICIAL INTELLIGENCE SUMMIT FORUM, 2020, 11427
  • [35] A Higly Configurable Deep Learning Architecture for Hyperspectral Image Classification
    Diaconescu, Paul
    Neagoe, Victor-Emil
    IEEE 13TH INTERNATIONAL SYMPOSIUM ON APPLIED COMPUTATIONAL INTELLIGENCE AND INFORMATICS (SACI 2019), 2019, : 197 - 200
  • [36] Efficient Deep Learning of Nonlocal Features for Hyperspectral Image Classification
    Shen, Yu
    Zhu, Sijie
    Chen, Chen
    Du, Qian
    Xiao, Liang
    Chen, Jianyu
    Pan, Delu
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2021, 59 (07): : 6029 - 6043
  • [37] Multitask Deep Learning With Spectral Knowledge for Hyperspectral Image Classification
    Liu, Shengjie
    Shi, Qian
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2020, 17 (12) : 2110 - 2114
  • [38] Machine Learning-Enabled Image Classification for Automated Electron Microscopy
    Day, Alexandra L.
    Wahl, Carolin B.
    Gupta, Vishu
    dos Reis, Roberto
    Liao, Wei-keng
    Mirkin, Chad A.
    Dravid, Vinayak P.
    Choudhary, Alok
    Agrawal, Ankit
    MICROSCOPY AND MICROANALYSIS, 2024, 30 (03) : 456 - 465
  • [39] Active-Learning-Incorporated Deep Transfer Learning for Hyperspectral Image Classification
    Lin, Jianzhe
    Zhao, Liang
    Li, Shuying
    Ward, Rabab
    Wang, Z. Jane
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2018, 11 (11) : 4048 - 4062
  • [40] Metaheuristics Optimization with Deep Learning Enabled Automated Image Captioning System
    Al Duhayyim, Mesfer
    Alazwari, Sana
    Mengash, Hanan Abdullah
    Marzouk, Radwa
    Alzahrani, Jaber S.
    Mahgoub, Hany
    Althukair, Fahd
    Salama, Ahmed S.
    APPLIED SCIENCES-BASEL, 2022, 12 (15):