Unraveling the Role of H2O on Cu-Based Catalyst in CO2 Hydrogenation to Methanol

被引:6
|
作者
Yan, Zhiqiang [1 ]
Wang, Yan [1 ]
Wang, Xiaoyue [1 ]
Xu, Chaoqin [1 ]
Zhang, Weimin [1 ]
Ban, Hongyan [1 ]
Li, Congming [1 ]
机构
[1] Taiyuan Univ Technol, State Key Lab Clean & Efficient Coal Utilizat, Taiyuan 030024, Shanxi, Peoples R China
基金
中国国家自然科学基金;
关键词
CO2; hydrogenation; Methanol; Cu-based catalysts; H2O; WATER; CU(110); MIXTURE;
D O I
10.1007/s10562-022-04047-7
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
CO2 hydrogenation to methanol has been extensively studied over Cu-based catalysts. H2O is an inevitable by-product during this reaction process. The essential role of H2O in determining the catalytic performance remains controversial. Herein, three kinds of common Cu-based catalysts (Cu/ZnO, Cu/Al2O3, Cu/SiO2) were selected to investigate the effect of H2O on the reaction performance over the range of 190 degrees C-290 degrees C in detail. Of all catalysts tested, it was noted that adding H2O showed substantially different effects on the methanol selectivity compared with the normal reaction. The representative Cu/SiO2 catalyst was further selected to investigate the role of H2O through a series of characterizations including BET, XRD, TEM, H-2-TPR and XPS, etc. Moreover, in situ FT-IR experiment was further conducted to understand the effect of H2O on the reaction pathways. The results indicated that H2O played the significant role on regulating the methanol selectivity by inhibiting and promoting the transformation from monodentate carbonate to bidentate formate over all the Cu-based catalysts at low (190-230 degrees C) and high (230-290 degrees C) temperature ranges, respectively. This preliminary study offers directions for the optimization of experimental conditions for the H2O involving reactions and provides referable experience for the further exploration and utilization of H2O effects on related fields as well. [GRAPHICS] .
引用
收藏
页码:1046 / 1056
页数:11
相关论文
共 50 条
  • [41] Cu/ZnO/AlOOH catalyst for methanol synthesis through CO2 hydrogenation
    Choi, EunGyoung
    Song, KyoungHo
    An, SoRa
    Lee, KwanYoung
    Youn, MinHyeh
    Park, KiTae
    Jeong, SoonKwan
    Kim, HakJoo
    KOREAN JOURNAL OF CHEMICAL ENGINEERING, 2018, 35 (01) : 73 - 81
  • [42] Improving methanol selectivity in CO2 hydrogenation by tuning the distance of Cu on catalyst
    Cui, Xiaojing
    Chen, Shuai
    Yang, Huanhuan
    Liu, Yequn
    Wang, Huifang
    Zhang, He
    Xue, Yanfeng
    Wang, Guofu
    Niu, Yulan
    Deng, Tiansheng
    Fan, Weibin
    APPLIED CATALYSIS B-ENVIRONMENTAL, 2021, 298
  • [43] Improving methanol selectivity in CO2 hydrogenation by tuning the distance of Cu on catalyst
    Cui, Xiaojing
    Chen, Shuai
    Yang, Huanhuan
    Liu, Yequn
    Wang, Huifang
    Zhang, He
    Xue, Yanfeng
    Wang, Guofu
    Niu, Yulan
    Deng, Tiansheng
    Fan, Weibin
    Applied Catalysis B: Environmental, 2021, 298
  • [44] Cu/ZnO/AlOOH catalyst for methanol synthesis through CO2 hydrogenation
    EunGyoung Choi
    KyoungHo Song
    SoRa An
    KwanYoung Lee
    MinHyeh Youn
    KiTae Park
    SoonKwan Jeong
    HakJoo Kim
    Korean Journal of Chemical Engineering, 2018, 35 : 73 - 81
  • [45] Hydrogenation of CO2 to Methanol on a Auδ+-In2O3-x Catalyst
    Rui, Ning
    Zhang, Feng
    Sun, Kaihang
    Liu, Zongyuan
    Xu, Wenqian
    Stavitski, Eli
    Senanayake, Sanjaya D.
    Rodriguez, Jose A.
    Liu, Chang-Jun
    ACS CATALYSIS, 2020, 10 (19): : 11307 - 11317
  • [46] Synergy between active sites of Cu-In-Zr-O catalyst in CO2 hydrogenation to methanol
    Yao, Libo
    Shen, Xiaochen
    Pan, Yanbo
    Peng, Zhenmeng
    JOURNAL OF CATALYSIS, 2019, 372 : 74 - 85
  • [47] CO2 hydrogenation to methanol over Rh/In2O3 catalyst
    Wang, Jing
    Sun, Kaihang
    Jia, Xinyu
    Liu, Chang-jun
    CATALYSIS TODAY, 2021, 365 : 341 - 347
  • [48] Understanding the Role of Cu/ZnO Interaction in CO2 Hydrogenation to Methanol
    Li, Congming
    Chen, Kuo
    Wang, Xiaoyue
    Xue, Nan
    Yang, Hengquan
    ACTA PHYSICO-CHIMICA SINICA, 2021, 37 (05)
  • [49] Unraveling the synergic effect of H2O in CO2 capture by aminoalcohols
    Wang, Kui
    Li, Daorong
    Zhao, Hailiang
    Li, Xu
    Sheng, Xia
    COMPUTATIONAL AND THEORETICAL CHEMISTRY, 2022, 1217
  • [50] Effect of Basicity on Cu Based Catalyst for CO2 Hydrogenation
    Sukkathanyawat, H.
    Wichianwat, K.
    Tungkamani, S.
    Bampenrat, A.
    2020 2ND INTERNATIONAL CONFERENCE ON ENVIRONMENT SCIENCES AND RENEWABLE ENERGY, 2020, 586