The fundamental gap of a kind of sub-elliptic operator

被引:1
|
作者
Sun, Hongli [1 ]
Yang, Donghui [1 ]
机构
[1] Cent South Univ, Sch Math & Stat, Changsha 410083, Peoples R China
基金
中国国家自然科学基金;
关键词
Fundamental gap; sub-elliptic operator; weak solution; optimal function; 1ST; 2; EIGENVALUES; SCHRODINGER-OPERATORS; DIRICHLET PROBLEMS; SOBOLEV SPACES; WEAK SOLUTIONS; DEGENERATE; INEQUALITY; REGULARITY; MAXIMUM;
D O I
10.1017/prm.2022.34
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper the minimum fundamental gap of a kind of sub-elliptic operator is concerned, we deal with the existence and uniqueness of weak solution for that. We verify that the minimization fundamental gap problem can be achieved by some function, and characterize the optimal function by adopting the differential of eigenvalues.
引用
收藏
页码:1118 / 1149
页数:32
相关论文
共 50 条
  • [1] Fundamental solutions for a family of sub-elliptic PDEs
    Calin, Ovidiu
    Chang, Der-Chen
    Fricke, Stanley Thomas
    PURE AND APPLIED MATHEMATICS QUARTERLY, 2007, 3 (02) : 393 - 415
  • [2] Strong Unique Continuation of Sub-elliptic Operator on the Heisenberg Group
    Hairong LIU
    Xiaoping YANG
    Chinese Annals of Mathematics(Series B), 2013, 34 (03) : 461 - 478
  • [3] Strong unique continuation of sub-elliptic operator on the Heisenberg group
    Hairong Liu
    Xiaoping Yang
    Chinese Annals of Mathematics, Series B, 2013, 34 : 461 - 478
  • [4] Strong unique continuation of sub-elliptic operator on the Heisenberg Group
    Liu, Hairong
    Yang, Xiaoping
    CHINESE ANNALS OF MATHEMATICS SERIES B, 2013, 34 (03) : 461 - 478
  • [5] Anisotropic estimates for sub-elliptic operators
    John BLAND
    Tom DUCHAMP
    Science in China(Series A:Mathematics), 2008, (04) : 509 - 522
  • [6] Schauder estimates for sub-elliptic equations
    Cristian E. Gutiérrez
    Ermanno Lanconelli
    Journal of Evolution Equations, 2009, 9
  • [7] REALMS OF MATHEMATICS - ELLIPTIC, HYPERBOLIC, PARABOLIC, SUB-ELLIPTIC
    STRICHARTZ, RS
    MATHEMATICAL INTELLIGENCER, 1987, 9 (03): : 56 - 64
  • [8] Anisotropic estimates for sub-elliptic operators
    John Bland
    Tom Duchamp
    Science in China Series A: Mathematics, 2008, 51 : 509 - 522
  • [9] Anisotropic estimates for sub-elliptic operators
    Bland, John
    Duchamp, Tom
    SCIENCE IN CHINA SERIES A-MATHEMATICS, 2008, 51 (04): : 509 - 522
  • [10] Schauder estimates for sub-elliptic equations
    Gutierrez, Cristian E.
    Lanconelli, Ermanno
    JOURNAL OF EVOLUTION EQUATIONS, 2009, 9 (04) : 707 - 726