Modeling, Sensitivity Analysis, and Optimization of the Methanol-to-Gasoline Process using Artificial Intelligence Methods

被引:0
|
作者
Pashangpoor, M. [1 ]
Askari, S. [1 ]
Azarhoosh, M. J. [2 ]
机构
[1] Islamic Azad Univ, Dept Chem Engn, Sci & Res Branch, Tehran 1477893855, Iran
[2] Urmia Univ, Fac Engn, Chem Engn Dept, Orumiyeh 5756151818, Iran
关键词
MTG process; HZSM-5; catalyst; modeling; optimization; artificial intelligence; HYDROGEN-PRODUCTION; KINETIC-MODEL; BED REACTOR; SIMULATION; CATALYST; CONVERSION;
D O I
10.1134/S0040579523070102
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
In this study, the gasoline yield in the methanol-to-gasoline (MTG) process was modeled using artificial neural network (ANN) and multivariate polynomial regression (MPR) techniques. The ANN trained using the Levenberg-Marquardt (LM) method and having three neurons in the hidden layer was the most accurate at predicting gasoline yield (R-2 = 0.993 and RMSE = 0.024). Therefore, this network was used to investigate the influence of operational conditions such as pressure, weight hourly space velocity (WHSV), temperature, and the average particle size of the Zeolite Socony Mobil-5 (ZSM-5) catalyst on the gasoline yield. Then, the particle swarm optimization (PSO) and genetic algorithm (GA) were used to approach the best operating parameters and catalyst size to get the most gasoline yield. The mentioned neural network was used as a fitness function in the optimization algorithms. The optimization results showed that at a pressure of 1 bar, a temperature of 400 degrees C, a WHSV equal to 1 h(-1), and a particle size of 1466 nm, the maximum gasoline yield is equivalent to 45.43.
引用
收藏
页码:S147 / S157
页数:11
相关论文
共 50 条
  • [41] Neutron spectrum unfolding using three artificial intelligence optimization methods
    Wang, Jie
    Zhou, Yulin
    Guo, Zhirong
    Liu, Haifeng
    APPLIED RADIATION AND ISOTOPES, 2019, 147 (136-143) : 136 - 143
  • [42] Two-dimensional solid-state NMR study of the methanol-to-gasoline process in zeolite HZSM-5.
    Knutson, E
    Isbester, PK
    Munson, EJ
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 1997, 213 : 564 - CHED
  • [43] Modelling the hot metal desulfurization process using artificial intelligence methods
    Podolska, Angelika
    Falkus, Jan
    ARCHIVES OF CIVIL ENGINEERING, 2024, 70 (02) : 255 - 270
  • [44] Artificial intelligence for dementia research methods optimization
    Bucholc, Magda
    James, Charlotte
    Al Khleifat, Ahmad
    Badhwar, AmanPreet
    Clarke, Natasha
    Dehsarvi, Amir
    Madan, Christopher R.
    Marzi, Sarah J.
    Shand, Cameron
    Schilder, Brian M.
    Tamburin, Stefano
    Tantiangco, Hanz M.
    Lourida, Ilianna
    Llewellyn, David J.
    Ranson, Janice M.
    ALZHEIMERS & DEMENTIA, 2023, 19 (12) : 5934 - 5951
  • [45] Dynamic Viscosity of Polyethylene Glycol (PEG): Data Assessment, Sensitivity Analysis and Robust Modeling via Artificial Intelligence Methods
    Altalbawy, Farag M. A.
    Al-Hussainy, Ali Fawzi
    Doshi, Hardik
    Ganesan, Subbulakshmi
    Agarwal, Mohit
    Kaur, Parjinder
    Saydaxmetova, Shaxnoza
    Nafea, Marwa Akram
    Najm, Mohanad Hasan
    Al-Shami, Karar R.
    Kiani, Mahmood
    Polymers for Advanced Technologies, 2024, 35 (10)
  • [46] Optimization of the seismic resistance of school buildings using artificial intelligence and sensitivity analysis theories - A Taiwan case study
    Chen, Ching -Shan
    STRUCTURES, 2023, 54 : 857 - 868
  • [47] Behavior Analysis of Sex based Cohorts Using the Toolset of Artificial Intelligence Based Insulin Sensitivity Prediction Methods
    Szabo, Balint
    Szlavecz, Akos
    Palancz, Bela
    Somogyi, Peter
    Chase, Geoff
    Benyo, Balazs
    IFAC PAPERSONLINE, 2021, 54 (15): : 352 - 357
  • [48] Cost Optimization of Dorzagliatin Using Artificial Intelligence-Powered Population Modeling
    Bennett, Brittany
    Allen, Sydney
    Eilerman, Bradley
    Testa, Leonard J.
    DIABETES, 2019, 68
  • [49] Process Optimization Models Using Artificial Intelligence and Digital Transformation of The Insurance Industry
    Radu, Nicoleta
    Alexandru, Felicia
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON BUSINESS EXCELLENCE, 2022, 16 (01): : 1283 - 1294
  • [50] Modeling Honey Adulteration by Processing Microscopic Images Using Artificial Intelligence Methods
    Pirmoradi, M.
    Mostafaei, M.
    Naderloo, L.
    Javadikia, H.
    JOURNAL OF AGRICULTURAL SCIENCE AND TECHNOLOGY, 2022, 24 (02): : 365 - 378