TIME-OPTIMAL TRAJECTORY GENERATION FOR INDUSTRIAL ROBOTS BASED ON ELITE MUTATION SPARROW SEARCH ALGORITHM

被引:0
|
作者
Li, Chunyan [1 ]
Chao, Yongsheng [1 ]
Chen, Shuai [1 ]
Li, Jiarong [1 ]
Yuan, Yiping [1 ]
机构
[1] Xinjiang Univ, Sch Mech Engn, Xinjiang 830017, Peoples R China
来源
基金
中国国家自然科学基金;
关键词
Traectory pannng; tme optma; non-unform septc B-spne; ete mutaton sparrow searcagortm EManconstrant elite mutation sparrow search algorithm (EMSSA) and constraint voaton; MANIPULATORS; OPTIMIZATION;
D O I
10.2316/J.2023.206-0754)
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
To mprove the efficency anstaty of nustraroots, a To i p ove the efficie cy a d stability of i dust ial obots a tme optmatraectory pannng metoaseon an ete mu time-optimal trajectory planning method based on an elite mu-taton sparrow searcagortm EMs proposeFrst a tation sparrow search algorithm (EMSSA) is proposed . First, a non unform septc B spne nterpoaton traectory functon s con non-uniform septic B-spline interpolation trajectory function is con-structe, wcovercomes te sortcomng of unsmootont ac-structed which overcomes the shortcoming of unsmooth joint ac ceeraton or ern ow orer nterpoaton anassgns nematc celeration or jerk in low-order interpolation and assigns kinematic parameters at the startng anstoppng ponts. econ, the fitness pa a ete s at the sta ti g a d stoppi g poi ts Seco d the fit ess functon s constructet mnmzes te sum of tme ntervas function is constructed . It minimizes the sum of time intervals etween two aacent nots n B spne traectory conserng ne between two adjacent knots in B-spline trajectory considering kine-matc constrants n EMs proposeto sceue te tme matic constraints. An EMSSA is proposed to schedule the time ntervas angenerate te tme optmaseptc B spne traectory intervals and generate the time-optimal septic B-spline trajectory. Ete reverse earnng strategy s useto optmze te ntapopua Elite reverse learning strategy is used to optimize the initial popula-to a accee ate the co ve ge ce speeof the ago th Beses tion and accelerate the convergence speed of the algorithm. Besides, to enance te souton quaty anavofang nto ocaoptmza to enhance the solution quality and avoid falling into local optimiza-ton te agortm s mprovey cosne escenng searcstep tion, the algorithm is improved by cosine -descending search step annormaaucy mutaton strateges Furtermore an exampe and normal -Cauchy mutation strategies. Furthermore, an example s gven to verfy tat te proposeagortm s eectve n sovng is given to verify that the proposed algorithm is effective in solving the te optat aecto y pa g p oe wth utco st at the ti me-opti mal trajectory planni ng problem with multi-constrai nt anas te avantages of fast sovng speegprecson anand has the advantages of fast solving speed , high precision, and gooroustness. good robustness
引用
收藏
页码:126 / 135
页数:10
相关论文
共 50 条
  • [41] Switching-Time Computation for Time-optimal Trajectory Planning of Wheeled Mobile Robots
    Han, Zhenyu
    Li, Shurong
    [J]. 2010 8TH WORLD CONGRESS ON INTELLIGENT CONTROL AND AUTOMATION (WCICA), 2010, : 6578 - 6583
  • [42] Trajectory Optimization Algorithm Based on Time-Optimal Cooperative Six-Axis Robot
    He, Chunlai
    Liu, Yunfei
    Liu, Jinglong
    Wang, Weijun
    Sun, Wei
    Liu, Shujian
    Cheng, Shuo
    [J]. 2024 8TH INTERNATIONAL CONFERENCE ON ROBOTICS, CONTROL AND AUTOMATION, ICRCA 2024, 2024, : 73 - 78
  • [43] Online Time-Optimal Trajectory Planning in Dynamic Workspace of Cable Suspended Robots
    Sharifi, Ahmad
    Taghirad, Hamid D.
    [J]. 2014 SECOND RSI/ISM INTERNATIONAL CONFERENCE ON ROBOTICS AND MECHATRONICS (ICROM), 2014, : 239 - 244
  • [44] Time-Optimal Trajectory Planning of Permanent Magnet Spherical Motor Based on Genetic Algorithm
    Zhao, Lijuan
    Li, Guoli
    Guo, Xiwen
    Li, Shen
    Wen, Yan
    Ye, Qiubo
    [J]. PROCEEDINGS OF THE 2017 12TH IEEE CONFERENCE ON INDUSTRIAL ELECTRONICS AND APPLICATIONS (ICIEA), 2017, : 828 - 833
  • [45] Optimal time-jerk trajectory planning for industrial robots
    Huang, Junsen
    Hu, Pengfei
    Wu, Kaiyuan
    Zeng, Min
    [J]. MECHANISM AND MACHINE THEORY, 2018, 121 : 530 - 544
  • [46] Industrial Robot Optimal Time Trajectory Planning Based on Genetic Algorithm
    Li, Guohong
    Wang, Yuanliang
    [J]. 2019 IEEE INTERNATIONAL CONFERENCE ON MECHATRONICS AND AUTOMATION (ICMA), 2019, : 136 - 140
  • [47] Time-Optimal Trajectory Planning Based on Dynamics for Differential-Wheeled Mobile Robots With a Geometric Corridor
    Kim, Yunjeong
    Kim, Byung Kook
    [J]. IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2017, 64 (07) : 5502 - 5512
  • [48] A TIME-OPTIMAL MULTIPLE SEARCH ALGORITHM ON ENHANCED MESHES, WITH APPLICATIONS
    BHAGAVATHI, D
    OLARIU, S
    SHEN, W
    WILSON, L
    [J]. JOURNAL OF PARALLEL AND DISTRIBUTED COMPUTING, 1994, 22 (01) : 113 - 120
  • [49] Time-Optimal Playback Trajectory Generation for Hydraulic Material Handling Excavator
    Wind, Hannes
    Renner, Anton
    Sawodny, Oliver
    [J]. 2019 IEEE 15TH INTERNATIONAL CONFERENCE ON AUTOMATION SCIENCE AND ENGINEERING (CASE), 2019, : 1315 - 1320
  • [50] Time-Optimal Trajectory Generation for Dynamic Vehicles: A Bilevel Optimization Approach
    Tang, Gao
    Sun, Weidong
    Hauser, Kris
    [J]. 2019 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2019, : 7644 - 7650