TIME-OPTIMAL TRAJECTORY GENERATION FOR INDUSTRIAL ROBOTS BASED ON ELITE MUTATION SPARROW SEARCH ALGORITHM

被引:0
|
作者
Li, Chunyan [1 ]
Chao, Yongsheng [1 ]
Chen, Shuai [1 ]
Li, Jiarong [1 ]
Yuan, Yiping [1 ]
机构
[1] Xinjiang Univ, Sch Mech Engn, Xinjiang 830017, Peoples R China
来源
基金
中国国家自然科学基金;
关键词
Traectory pannng; tme optma; non-unform septc B-spne; ete mutaton sparrow searcagortm EManconstrant elite mutation sparrow search algorithm (EMSSA) and constraint voaton; MANIPULATORS; OPTIMIZATION;
D O I
10.2316/J.2023.206-0754)
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
To mprove the efficency anstaty of nustraroots, a To i p ove the efficie cy a d stability of i dust ial obots a tme optmatraectory pannng metoaseon an ete mu time-optimal trajectory planning method based on an elite mu-taton sparrow searcagortm EMs proposeFrst a tation sparrow search algorithm (EMSSA) is proposed . First, a non unform septc B spne nterpoaton traectory functon s con non-uniform septic B-spline interpolation trajectory function is con-structe, wcovercomes te sortcomng of unsmootont ac-structed which overcomes the shortcoming of unsmooth joint ac ceeraton or ern ow orer nterpoaton anassgns nematc celeration or jerk in low-order interpolation and assigns kinematic parameters at the startng anstoppng ponts. econ, the fitness pa a ete s at the sta ti g a d stoppi g poi ts Seco d the fit ess functon s constructet mnmzes te sum of tme ntervas function is constructed . It minimizes the sum of time intervals etween two aacent nots n B spne traectory conserng ne between two adjacent knots in B-spline trajectory considering kine-matc constrants n EMs proposeto sceue te tme matic constraints. An EMSSA is proposed to schedule the time ntervas angenerate te tme optmaseptc B spne traectory intervals and generate the time-optimal septic B-spline trajectory. Ete reverse earnng strategy s useto optmze te ntapopua Elite reverse learning strategy is used to optimize the initial popula-to a accee ate the co ve ge ce speeof the ago th Beses tion and accelerate the convergence speed of the algorithm. Besides, to enance te souton quaty anavofang nto ocaoptmza to enhance the solution quality and avoid falling into local optimiza-ton te agortm s mprovey cosne escenng searcstep tion, the algorithm is improved by cosine -descending search step annormaaucy mutaton strateges Furtermore an exampe and normal -Cauchy mutation strategies. Furthermore, an example s gven to verfy tat te proposeagortm s eectve n sovng is given to verify that the proposed algorithm is effective in solving the te optat aecto y pa g p oe wth utco st at the ti me-opti mal trajectory planni ng problem with multi-constrai nt anas te avantages of fast sovng speegprecson anand has the advantages of fast solving speed , high precision, and gooroustness. good robustness
引用
收藏
页码:126 / 135
页数:10
相关论文
共 50 条
  • [1] TIME-OPTIMAL TRAJECTORY GENERATION FOR INDUSTRIAL ROBOTS BASED ON ELITE MUTATION SPARROW SEARCH ALGORITHM
    Li, Chunyan
    Chao, Yongsheng
    Chen, Shuai
    Li, Jiarong
    Yuan, Yiping
    [J]. International Journal of Robotics and Automation, 2023, 38 (02) : 126 - 135
  • [2] Time Optimal Trajectory Planing Based on Improved Sparrow Search Algorithm
    Zhang, Xiaofeng
    Xiao, Fan
    Tong, XiLiang
    Yun, Juntong
    Liu, Ying
    Sun, Ying
    Tao, Bo
    Kong, Jianyi
    Xu, Manman
    Chen, Baojia
    [J]. Frontiers in Bioengineering and Biotechnology, 2022, 10
  • [3] Time Optimal Trajectory Planing Based on Improved Sparrow Search Algorithm
    Zhang, Xiaofeng
    Xiao, Fan
    Tong, XiLiang
    Yun, Juntong
    Liu, Ying
    Sun, Ying
    Tao, Bo
    Kong, Jianyi
    Xu, Manman
    Chen, Baojia
    [J]. FRONTIERS IN BIOENGINEERING AND BIOTECHNOLOGY, 2022, 10
  • [4] Time-optimal Trajectory Planning of 6-RUS Parallel Robots Based on Grid Search Algorithm
    Liu, Dongcai
    Dong, Guangyu
    Du, Yuhong
    Li, Wenpeng
    [J]. Zhongguo Jixie Gongcheng/China Mechanical Engineering, 2023, 34 (13): : 1589 - 1598
  • [5] Online near time-optimal trajectory planning for industrial robots
    Kim, Joonyoung
    Croft, Elizabeth A.
    [J]. ROBOTICS AND COMPUTER-INTEGRATED MANUFACTURING, 2019, 58 : 158 - 171
  • [6] Time-optimal Trajectory Planning of Industrial Robots based on Particle Swarm Optimization
    Gao, Mingyu
    Ding, Pan
    Yang, Yuxiang
    [J]. 2015 FIFTH INTERNATIONAL CONFERENCE ON INSTRUMENTATION AND MEASUREMENT, COMPUTER, COMMUNICATION AND CONTROL (IMCCC), 2015, : 1934 - 1939
  • [7] Robot Time-Optimal Trajectory Planning Based on Improved Cuckoo Search Algorithm
    Wang, Wenjie
    Tao, Qing
    Cao, Yuting
    Wang, Xiaohua
    Zhang, Xu
    [J]. IEEE ACCESS, 2020, 8 : 86923 - 86933
  • [8] Smooth and near time-optimal trajectory planning of industrial robots for online applications
    Xiao, Yongqiang
    Du, Zhijiang
    Dong, Wei
    [J]. INDUSTRIAL ROBOT-THE INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH AND APPLICATION, 2012, 39 (02): : 169 - 177
  • [9] Optimal trajectory planning for industrial robots using harmony search algorithm
    Chen, Youdong
    Yan, Liang
    Wei, Hongxing
    Wang, Tianmiao
    [J]. INDUSTRIAL ROBOT-THE INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH AND APPLICATION, 2013, 40 (05): : 502 - 512
  • [10] Industrial Robot Trajectory Optimization Based on Improved Sparrow Search Algorithm
    Ma, Fei
    Sun, Weiwei
    Jiang, Zhouxiang
    Suo, Shuangfu
    Wang, Xiao
    Liu, Yue
    [J]. MACHINES, 2024, 12 (07)