An inertial Mann algorithm for nonexpansive mappings on Hadamard manifolds

被引:5
|
作者
Khammahawong, Konrawut [1 ]
Chaipunya, Parin [2 ]
Kumam, Poom [3 ,4 ]
机构
[1] Rajamangala Univ Technol Thanyaburi, Fac Sci & Technol, Appl Math Sci & Engn Res Unit AMSERU, Dept Math & Comp Sci,Program Appl Stat, Pathum Thani 12110, Thailand
[2] King Mongkuts Univ Technol Thonburi, Fixed Point Theory & Applicat Res Grp, Ctr Excellence Theoret & Computat Sci TaCS CoE, NCAO Res Ctr,Fac Sci, Bangkok 10140, Thailand
[3] King Mongkuts Univ Technol Thonburi, Fac Sci, Ctr Excellence Theoret & Computat Sci TaCS CoE, Bangkok 10140, Thailand
[4] King Mongkuts Univ Technol Thonburi, Fac Sci, KMUTT Fixed Point Res Lab, Fixed Point Lab,Sci Lab Bldg,Dept Math, Bangkok 10140, Thailand
来源
AIMS MATHEMATICS | 2023年 / 8卷 / 01期
关键词
fixed point problem; Hadamard manifold; inertial Mann method; nonexpansive mapping; MAXIMAL MONOTONE-OPERATORS; PROXIMAL POINT ALGORITHM; EQUILIBRIUM PROBLEMS; INCLUSION PROBLEMS; ITERATIVE ALGORITHMS; RIEMANNIAN-MANIFOLDS; VECTOR-FIELDS; FIXED-POINTS; SINGULARITIES; CONVERGENCE;
D O I
10.3934/math.2023108
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
An inertial Mann algorithm will be presented in this article with the purpose of approximating a fixed point of a nonexpansive mapping on a Hadamard manifold. Any sequence that is generated by using the proposed approach, under suitable assumptions, converges to fixed points of nonexpansive mappings. The proposed method is also dedicated to solving inclusion and equilibrium problems. Lastly, we give a number of computational experiments that show how well the inertial Mann algorithm works and how it compares to other methods.
引用
下载
收藏
页码:2093 / 2116
页数:24
相关论文
共 50 条
  • [31] CONVERGENCE OF MANN'S ITERATION FOR RELATIVELY NONEXPANSIVE MAPPINGS
    Eldred, A. Anthony
    Praveen, A.
    FIXED POINT THEORY, 2017, 18 (02): : 545 - 554
  • [32] A Mean Ergodic Theorem for Nonexpansive Mappings in Hadamard Spaces
    Khatibzadeh, H.
    Pouladi, H.
    ANALYSIS MATHEMATICA, 2021, 47 (02) : 329 - 342
  • [33] ALTERNATED INERTIAL METHOD FOR NONEXPANSIVE MAPPINGS WITH APPLICATIONS
    Iyiola, O. S.
    Shehu, Y.
    JOURNAL OF NONLINEAR AND CONVEX ANALYSIS, 2020, 21 (05) : 1175 - 1189
  • [34] Modified inertial Mann's algorithm and inertial hybrid algorithm for k-strict pseudo-contractive mappings
    Baiya, Suparat
    Ungchittrakool, Kasamsuk
    CARPATHIAN JOURNAL OF MATHEMATICS, 2023, 39 (01) : 27 - 43
  • [35] A transformation algorithm for nonexpansive mappings
    Zhu, Xinhe
    Kang, Shin Min
    JOURNAL OF NONLINEAR SCIENCES AND APPLICATIONS, 2017, 10 (05): : 2449 - 2456
  • [36] Approximating Fixed Points of Nonexpansive Type Mappings via General Picard-Mann Algorithm
    Shukla, Rahul
    Panicker, Rekha
    COMPUTATION, 2022, 10 (09)
  • [37] Weak convergence of inertial proximal point algorithm for a family of nonexpansive mappings in Hilbet spaces
    Tiammee, Supalin
    Tiammee, Jukrapong
    CARPATHIAN JOURNAL OF MATHEMATICS, 2024, 40 (01) : 173 - 185
  • [38] Inertial Krasnosel'skii-Mann iterative algorithm with step-size parameters involving nonexpansive mappings with applications to solve image restoration problems
    Artsawang, Natthaphon
    Plubtieng, Somyot
    Bagdasar, Ovidiu
    Ungchittrakool, Kasamsuk
    Baiya, Suparat
    Thammasiri, Purit
    CARPATHIAN JOURNAL OF MATHEMATICS, 2024, 40 (02) : 243 - 261
  • [39] The Fibonacci–Mann iteration for monotone asymptotically pointwise nonexpansive mappings
    Buthinah A. Bin Dehaish
    Journal of Fixed Point Theory and Applications, 2019, 21
  • [40] FIBONACCI-MANN ITERATION FOR MONOTONE ASYMPTOTICALLY NONEXPANSIVE MAPPINGS
    Alfuraidan, M. R.
    Khamsi, M. A.
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2017, 96 (02) : 307 - 316