An inertial Mann algorithm for nonexpansive mappings on Hadamard manifolds

被引:5
|
作者
Khammahawong, Konrawut [1 ]
Chaipunya, Parin [2 ]
Kumam, Poom [3 ,4 ]
机构
[1] Rajamangala Univ Technol Thanyaburi, Fac Sci & Technol, Appl Math Sci & Engn Res Unit AMSERU, Dept Math & Comp Sci,Program Appl Stat, Pathum Thani 12110, Thailand
[2] King Mongkuts Univ Technol Thonburi, Fixed Point Theory & Applicat Res Grp, Ctr Excellence Theoret & Computat Sci TaCS CoE, NCAO Res Ctr,Fac Sci, Bangkok 10140, Thailand
[3] King Mongkuts Univ Technol Thonburi, Fac Sci, Ctr Excellence Theoret & Computat Sci TaCS CoE, Bangkok 10140, Thailand
[4] King Mongkuts Univ Technol Thonburi, Fac Sci, KMUTT Fixed Point Res Lab, Fixed Point Lab,Sci Lab Bldg,Dept Math, Bangkok 10140, Thailand
来源
AIMS MATHEMATICS | 2023年 / 8卷 / 01期
关键词
fixed point problem; Hadamard manifold; inertial Mann method; nonexpansive mapping; MAXIMAL MONOTONE-OPERATORS; PROXIMAL POINT ALGORITHM; EQUILIBRIUM PROBLEMS; INCLUSION PROBLEMS; ITERATIVE ALGORITHMS; RIEMANNIAN-MANIFOLDS; VECTOR-FIELDS; FIXED-POINTS; SINGULARITIES; CONVERGENCE;
D O I
10.3934/math.2023108
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
An inertial Mann algorithm will be presented in this article with the purpose of approximating a fixed point of a nonexpansive mapping on a Hadamard manifold. Any sequence that is generated by using the proposed approach, under suitable assumptions, converges to fixed points of nonexpansive mappings. The proposed method is also dedicated to solving inclusion and equilibrium problems. Lastly, we give a number of computational experiments that show how well the inertial Mann algorithm works and how it compares to other methods.
引用
收藏
页码:2093 / 2116
页数:24
相关论文
共 50 条
  • [1] A Riemannian Inertial Mann Algorithm for Nonexpansive Mappings on Hadamard Manifolds
    Yao, Teng-Teng
    Jin, Xiao-Qing
    Zhao, Zhi
    [J]. NUMERICAL MATHEMATICS-THEORY METHODS AND APPLICATIONS, 2023, 16 (04) : 954 - 967
  • [2] A Riemannian Inertial Mann Algorithm for Nonexpansive Mappings on Hadamard Manifolds
    Yao, Teng-Teng
    Jin, Xiao-Qing
    Zhao, Zhi
    [J]. NUMERICAL MATHEMATICS-THEORY METHODS AND APPLICATIONS, 2023,
  • [3] An inertial Mann algorithm for nonexpansive mappings
    Seakweng Vong
    Dongdong Liu
    [J]. Journal of Fixed Point Theory and Applications, 2018, 20
  • [4] An inertial Mann algorithm for nonexpansive mappings
    Vong, Seakweng
    Liu, Dongdong
    [J]. JOURNAL OF FIXED POINT THEORY AND APPLICATIONS, 2018, 20 (03)
  • [5] Modified inertial Mann algorithm and inertial CQ-algorithm for nonexpansive mappings
    Dong, Q. L.
    Yuan, H. B.
    Cho, Y. J.
    Rassias, Th. M.
    [J]. OPTIMIZATION LETTERS, 2018, 12 (01) : 87 - 102
  • [6] Modified inertial Mann algorithm and inertial CQ-algorithm for nonexpansive mappings
    Q. L. Dong
    H. B. Yuan
    Y. J. Cho
    Th. M. Rassias
    [J]. Optimization Letters, 2018, 12 : 87 - 102
  • [7] A modified Riemannian Halpern algorithm for nonexpansive mappings on Hadamard manifolds
    Yao, Teng-Teng
    Li, Ying-Hui
    Zhang, Yong-Shuai
    Zhao, Zhi
    [J]. OPTIMIZATION, 2022, 71 (13) : 3797 - 3817
  • [8] ITERATIVE ALGORITHMS FOR NONEXPANSIVE MAPPINGS ON HADAMARD MANIFOLDS
    Li, Chong
    Lopez, Genaro
    Martin-Marquez, Victoria
    [J]. TAIWANESE JOURNAL OF MATHEMATICS, 2010, 14 (02): : 541 - 559
  • [9] Approximation Methods for Nonexpansive Type Mappings in Hadamard Manifolds
    Lopez, Genaro
    Martin-Marquez, Victoria
    [J]. FIXED-POINT ALGORITHMS FOR INVERSE PROBLEMS IN SCIENCE AND ENGINEERING, 2011, 49 : 273 - 299
  • [10] An inertial mann-like algorithm for fixed points of nonexpansive mappings in hilbert spaces
    Tan B.
    Cho S.Y.
    [J]. Cho, Sun Young (sycho@gntech.ac.kr), 1600, Biemdas Academic Publishers (02): : 335 - 351