Discontinuous Galerkin method for the diffusive-viscous wave equation

被引:6
|
作者
Zhang, Min [1 ]
Yan, Wenjing [1 ]
Jing, Feifei [2 ,3 ]
Zhao, Haixia [1 ]
机构
[1] Xi An Jiao Tong Univ, Sch Math & Stat, Xian 710049, Shaanxi, Peoples R China
[2] Northwestern Polytech Univ, Sch Math & Stat, Xian 710129, Shaanxi, Peoples R China
[3] Northwestern Polytech Univ, Xian Key Lab Sci Computat & Appl Stat, Xian 710129, Shaanxi, Peoples R China
基金
中国国家自然科学基金;
关键词
Discontinuous Galerkin method; Diffusive-viscous wave equation; Error estimates; Variable coefficients; FINITE-ELEMENT-METHOD; PROPAGATION;
D O I
10.1016/j.apnum.2022.08.014
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper develops and analyzes the discontinuous Galerkin method for the diffusive-viscous wave equation. The proposed numerical scheme is established by using the discontinuous Galerkin discretization for the spatial variable and a tailored finite difference scheme to approximate the first and second order temporal derivative terms. A second order temporal convergence rate and the optimal order spatial error estimate in the DG norm are derived. We also provide the optimal spatial error estimate in the L-2(omega)-norm under the extra parameter assumption. Numerical tests are presented to illustrate the predicted convergence behaviours and the versatility of the proposed method. (C) 2022 IMACS. Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:118 / 139
页数:22
相关论文
共 50 条
  • [21] An explicit hybridizable discontinuous Galerkin method for the acoustic wave equation
    Stanglmeier, M.
    Nguyen, N. C.
    Peraire, J.
    Cockburn, B.
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2016, 300 : 748 - 769
  • [22] A NEW APPROACH FOR THE TREATMENT OF DIFFUSIVE TERMS OF THE CONVECTIVE-DIFFUSIVE TRANSPORT EQUATION IN THE DISCONTINUOUS GALERKIN METHOD
    Gomez, H.
    Colominas, I.
    Navarrina, F.
    Casteleiro, M.
    REVISTA INTERNACIONAL DE METODOS NUMERICOS PARA CALCULO Y DISENO EN INGENIERIA, 2007, 23 (04): : 343 - 362
  • [23] A new approximation to the reflection coefficient of the diffusive-viscous wave equation and its evaluation for frequency-dependent AVA inversion
    Wang, Zhiqiang
    Gao, Jinghuai
    Zhao, Haixia
    Chen, Hongling
    JOURNAL OF APPLIED GEOPHYSICS, 2022, 201
  • [24] A discontinuous Galerkin method for viscous compressible multifluids
    Michoski, C.
    Evans, J. A.
    Schmitz, P. G.
    Vasseur, A.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2010, 229 (06) : 2249 - 2266
  • [25] AN EFFICIENT METHOD TO MODEL SEISMIC PROPAGATION IN DIFFUSIVE-VISCOUS MEDIA WITH DIPPING INTERFACES
    Sun, Fengyuan
    Gao, Jinghuai
    Liu, Naihao
    JOURNAL OF SEISMIC EXPLORATION, 2019, 28 (01): : 21 - 40
  • [26] A discontinuous Galerkin method for the viscous MHD equations
    Warburton, TC
    Karniadakis, GE
    JOURNAL OF COMPUTATIONAL PHYSICS, 1999, 152 (02) : 608 - 641
  • [27] A nodal discontinuous Galerkin finite element method for the poroelastic wave equation
    Shukla, Khemraj
    Hesthaven, Jan S.
    Carcione, Jose M.
    Ye, Ruichao
    de la Puente, Josep
    Jaiswal, Priyank
    COMPUTATIONAL GEOSCIENCES, 2019, 23 (03) : 595 - 615
  • [28] Numerical simulation of seismic wave equation by local discontinuous Galerkin method
    Lian Xi-Meng
    Zhang Rui-Xuan
    CHINESE JOURNAL OF GEOPHYSICS-CHINESE EDITION, 2013, 56 (10): : 3507 - 3513
  • [29] AN ENERGY-BASED DISCONTINUOUS GALERKIN METHOD FOR THE WAVE EQUATION WITH ADVECTION
    Zhang, Lu
    Hagstrom, Thomas
    Appelo, Daniel
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2019, 57 (05) : 2469 - 2492
  • [30] STABILITY ANALYSIS OF THE INTERIOR PENALTY DISCONTINUOUS GALERKIN METHOD FOR THE WAVE EQUATION
    Agut, Cyril
    Diaz, Julien
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2013, 47 (03): : 903 - 932