A Simulation Study on the Influence of Street Tree Configuration on Fine Particulate Matter (PM2.5) Concentration in Street Canyons

被引:2
|
作者
Liu, Junyou [1 ]
Zheng, Bohong [1 ]
机构
[1] Cent South Univ, Sch Architecture & Art, Changsha 410083, Peoples R China
来源
FORESTS | 2023年 / 14卷 / 08期
关键词
street canyons; street tree configuration; PM2.5; simulation; LEAF-AREA INDEX; AIR-QUALITY; DISPERSION; VEGETATION; VENTILATION; DEPOSITION; POLLUTION; IMPACTS;
D O I
10.3390/f14081550
中图分类号
S7 [林业];
学科分类号
0829 ; 0907 ;
摘要
Because motor vehicles emit a large amount of PM2.5 pollution, traffic-related emissions have always been an important part of PM2.5 pollution. To better understand the influence of street trees on traffic-related PM2.5 pollution, our study focused on camphor trees, common evergreen urban street trees in central and southern China. We used ENVI-met for the simulation of PM2.5 pollution and to build a model to show the distribution of PM2.5 pollution along a section of Xinyao North Road in downtown Changsha City in central China. Based on this model, we constructed four other models with different heights, quantities, and distances between street trees, where each model had high feasibility and aimed to determine how these affect the PM2.5 concentration on the designated block. We performed simulations within different time frames in the year. We found that the wind can promote the diffusion of PM2.5 in the street canyon. Too dense a distribution of tall street trees will have a negative impact on PM2.5 concentration in street canyons. A moderate distance between street trees is conducive to the dispersion of pollutants. Because the crown of 5 m high street trees is small, its negative impact on the dispersion of wind and PM2.5 is relatively small, so further increasing the number of 5 m high street trees in street canyons with densely distributed tall street trees will have only a little more negative impact on PM2.5 concentration in street canyons. The PM2.5 concentration in the street canyon is generally better when the street trees are 5 m long, even if the number of 5 m high street trees is relatively large. Although the crown size of 15 m high street trees is larger than that of 10 m street trees, the vertical distance between the canopy of 15 m high street trees and the ground is usually greater than that of 10 m high street trees. The distance between the canopy of 15 m high street trees and the breathing zone is usually greater than that of the 10 m street trees. Longer distances lead to a weakening of its impact on PM2.5. When the 15 m high and 10 m high street trees are more scattered in the street, their effects on the PM2.5 concentration at the height of the breathing zone (1.5 m) are generally similar.
引用
收藏
页数:26
相关论文
共 50 条
  • [41] A Study on the Design Method of Indoor Fine Particulate Matter (PM2.5) Pollution Control in China
    Wang, Qingqin
    Fan, Dongye
    Zhao, Li
    Wu, Weiwei
    INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH, 2019, 16 (23)
  • [42] Elemental composition of fine particulate matter (PM2.5) in Skopje, FYR of Macedonia
    Kovacevik, Borka
    Wagner, Annemarie
    Boman, Johan
    Laursen, Jens
    Pettersson, Jan B. C.
    X-RAY SPECTROMETRY, 2011, 40 (04) : 280 - 288
  • [43] Elemental Composition and Sources of Fine Particulate Matter (PM2.5) in Delhi, India
    Sharma, S. K.
    Mandal, T. K.
    BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY, 2023, 110 (03)
  • [44] Infiltration Characteristic of Outdoor Fine Particulate Matter (PM2.5) for the Window Gaps
    Wan, Yali
    Chen, Chao
    Wang, Ping
    Wang, Yafeng
    Chen, Ziguang
    Zhao, Li
    9TH INTERNATIONAL SYMPOSIUM ON HEATING, VENTILATION AND AIR CONDITIONING (ISHVAC) JOINT WITH THE 3RD INTERNATIONAL CONFERENCE ON BUILDING ENERGY AND ENVIRONMENT (COBEE), 2015, 121 : 191 - 198
  • [45] A review of respirable fine particulate matter (PM2.5)-induced brain damage
    Li, Wei
    Lin, Guohui
    Xiao, Zaixing
    Zhang, Yichuan
    Li, Bin
    Zhou, Yu
    Ma, Yong
    Chai, Erqing
    FRONTIERS IN MOLECULAR NEUROSCIENCE, 2022, 15
  • [46] Measurement and Analysis of Fine Particulate Matter (PM2.5) in Urban Areas of Pakistan
    Rasheed, Anjum
    Aneja, Viney P.
    Aiyyer, Anantha
    Rafique, Uzaira
    AEROSOL AND AIR QUALITY RESEARCH, 2015, 15 (02) : 426 - 439
  • [47] Avoidable Mortality Attributable to Anthropogenic Fine Particulate Matter (PM2.5) in Australia
    Hanigan, Ivan C.
    Broome, Richard A.
    Chaston, Timothy B.
    Cope, Martin
    Dennekamp, Martine
    Heyworth, Jane S.
    Heathcote, Katharine
    Horsley, Joshua A.
    Jalaludin, Bin
    Jegasothy, Edward
    Johnston, Fay H.
    Knibbs, Luke D.
    Pereira, Gavin
    Vardoulakis, Sotiris
    Vander Hoorn, Stephen
    Morgan, Geoffrey G.
    INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH, 2021, 18 (01) : 1 - 9
  • [48] Elemental Composition and Sources of Fine Particulate Matter (PM2.5) in Delhi, India
    S. K. Sharma
    T. K. Mandal
    Bulletin of Environmental Contamination and Toxicology, 2023, 110
  • [49] Rat Lung Response to Ozone and Fine Particulate Matter (PM2.5) Exposures
    Wang, Guanghe
    Zhao, Jinzhuo
    Jiang, Rongfang
    Song, Weimin
    ENVIRONMENTAL TOXICOLOGY, 2015, 30 (03) : 343 - 356
  • [50] Influence of atmospheric fine particulate matter (PM2.5) pollution on indoor environment during winter in Beijing
    Zhao, Li
    Chen, Chao
    Wang, Ping
    Chen, Ziguang
    Cao, Shijie
    Wang, Qingqin
    Xie, Guangya
    Wan, Yali
    Wang, Yafeng
    Lu, Bin
    BUILDING AND ENVIRONMENT, 2015, 87 : 283 - 291