A Note on Stabbing Convex Bodies with Points, Lines, and Flats

被引:0
|
作者
Har-Peled, Sariel [1 ]
Jones, Mitchell [1 ]
机构
[1] Univ Illinois, Dept Comp Sci, 201 N Goodwin Ave, Urbana, IL 61801 USA
关键词
Weak e-net; Approximation; Sublinear bounds; EPSILON-NETS; CONSTRUCTION;
D O I
10.1007/s00454-023-00496-y
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Consider the problem of constructing weak e-nets where the stabbing elements are lines or k-flats instead of points. We study this problem in the simplest setting where it is still interesting-namely, the uniform measure of volume over the hypercube [0, 1](d). Specifically, a (k, e)-net is a set of k-flats, such that any convex body in [0, 1](d) of volume larger than e is stabbed by one of these k-flats. We show that for k = 1, one can construct (k, e)-nets of size O(1/e(1-k/d)). We also prove that any such net must have size at least O (1/e(1-k/d)). As a concrete example, in three dimensions all e-heavy bodies in [0, 1]3 can be stabbed by T(1/e(2/3)) lines. Note that these bounds are sublinear in 1/e, and are thus somewhat surprising. The new construction also works for points providing a weak e-net of size O((1/e)log(d-1)(1/e)).
引用
收藏
页码:1241 / 1254
页数:14
相关论文
共 50 条
  • [21] LATTICE POINTS IN LARGE CONVEX-BODIES
    KRATZEL, E
    NOWAK, WG
    MONATSHEFTE FUR MATHEMATIK, 1991, 112 (01): : 61 - 72
  • [22] Convex fuzzy bodies and fuzzy focal points
    El-Sayied, HK
    CHAOS SOLITONS & FRACTALS, 2003, 18 (04) : 703 - 708
  • [23] Random points on the boundary of smooth convex bodies
    Reitzner, M
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2002, 354 (06) : 2243 - 2278
  • [24] Random points in isotropic unconditional convex bodies
    Giannopoulos, A
    Hartzoulaki, M
    Tsolomitis, A
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2005, 72 : 779 - 798
  • [25] Discrepancy for convex bodies with isolated flat points
    Brandolini, Luca
    Colzani, Leonardo
    Gariboldi, Bianca
    Gigante, Giacomo
    Travaglini, Giancarlo
    REVISTA MATEMATICA IBEROAMERICANA, 2020, 36 (06) : 1597 - 1626
  • [26] A note on generalized convex bodies in elliptic space
    El-Sayied, HKM
    CHAOS SOLITONS & FRACTALS, 2002, 14 (01) : 163 - 165
  • [27] A NOTE CONCERNING EXTREMAL POINTS OF A CONVEX SET
    OLECH, C
    BULLETIN DE L ACADEMIE POLONAISE DES SCIENCES-SERIE DES SCIENCES MATHEMATIQUES ASTRONOMIQUES ET PHYSIQUES, 1965, 13 (05): : 347 - &
  • [28] A note on convex decompositions of a set of points in the plane
    Neumann-Lara, V
    Rivera-Campo, E
    Urrutia, J
    GRAPHS AND COMBINATORICS, 2004, 20 (02) : 223 - 231
  • [29] A Note on Convex Decompositions of a Set of Points in the Plane
    Víctor Neumann-Lara
    Eduardo Rivera-Campo
    Jorge Urrutia
    Graphs and Combinatorics, 2004, 20 : 223 - 231
  • [30] Lattice points in three-dimensional convex bodies
    Krätzel, E
    MATHEMATISCHE NACHRICHTEN, 2000, 212 : 77 - 90