Non-equilibrium Onsager-Machlup theory

被引:0
|
作者
Peredo-Ortiz, Ricardo [1 ]
Elizondo-Aguilera, Luis F. [2 ]
Ramirez-Gonzalez, Pedro [1 ]
Lazaro-Lazaro, Edilio [1 ]
Mendoza-Mendez, Patricia [3 ]
Medina-Noyola, Magdaleno [1 ]
机构
[1] Univ Autonoma San Luis Potosi, Inst Fis Manuel Sandoval Vallarta, Alvaro Obregon 64, San Luis Potosi 78000, Slp, Mexico
[2] Benemerita Univ Autonoma Puebla, Inst Fis, Puebla, Mexico
[3] Benemerita Univ Autonoma Puebla, Fac Ciencias Fis Matemat, Puebla, Mexico
关键词
Onsager-Machlup; NE-SCGLE; non-equilibrium thermodynamics; Lyapunov stability; stochastic processes; DENSITY-FUNCTIONAL THEORY; IRREVERSIBLE-PROCESSES; RECIPROCAL RELATIONS; LANGEVIN EQUATION; GLASS-TRANSITION; LIQUIDS; THERMODYNAMICS; TIME; FLUCTUATIONS; RELAXATION;
D O I
10.1080/00268976.2023.2297991
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
This paper proposes a simple mathematical model of non-stationary and non-linear stochastic dynamics, which approximates a (globally) non-stationary and non-linear stochastic process by its locally (or 'piecewise') stationary version. Profiting from the elegance and simplicity of both, the exact mathematical model referred to as the Ornstein-Uhlenbeck stochastic process (which is globally stationary, Markov and Gaussian) and of the Lyapunov criterion associated with the stability of stationarity, we show that the proposed non-linear non-stationary model provides a natural extension of the Onsager-Machlup theory of equilibrium thermal fluctuations, to the realm of non-stationary, non-linear and non-equilibrium processes. As an illustrative application, we then apply the extended non-equilibrium Onsager-Machlup theory, to the description of thermal fluctuations and irreversible relaxation processes in liquids, leading to the main exact equations employed to construct the non-equilibrium self-consistent generalised Langevin equation (NE-SCGLE) theory of irreversible processes in liquids. This generic theory has demonstrated that the most intriguing and long-unsolved questions of the glass and gel transitions are understood as a natural consequence of the second law of thermodynamics, enunciated in terms of the proposed piecewise stationary stochastic mathematical model. [GRAPHICS]
引用
收藏
页数:20
相关论文
共 50 条
  • [11] Anisothermal chemical reactions: Onsager-Machlup and macroscopic fluctuation theory
    Renger, D. R. Michiel
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2022, 55 (31)
  • [12] Onsager-Machlup Theory for Nonequilibrium Steady States and Fluctuation Theorems
    Tooru Taniguchi
    E. G. D. Cohen
    [J]. Journal of Statistical Physics, 2007, 126 : 1 - 41
  • [13] Information geometrical characterization of the Onsager-Machlup process
    Tanaka, Shigenori
    [J]. CHEMICAL PHYSICS LETTERS, 2017, 689 : 152 - 155
  • [14] APPLICATION OF THE ONSAGER-MACHLUP FUNCTION TO NON-LINEAR DIFFUSION PROCESSES
    DURR, D
    BACH, A
    [J]. ZEITSCHRIFT FUR PHYSIK B-CONDENSED MATTER, 1979, 32 (04): : 413 - 417
  • [15] On the Onsager-Machlup functional for elliptic diffusion processes
    Capitaine, M
    [J]. SEMINAIRE DE PROBABILITES XXXIV, 2000, 1729 : 313 - 328
  • [16] Statistical formulation of the Onsager-Machlup variational principle
    Yasuda, Kento
    Ishimoto, Kenta
    Komura, Shigeyuki
    [J]. Physical Review E, 2024, 110 (04)
  • [17] Onsager-Machlup functional for stochastic evolution equations
    Bardina, X
    Rovira, C
    Tindel, S
    [J]. ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2003, 39 (01): : 69 - 93
  • [18] The Onsager-Machlup Integral for Non-Reciprocal Systems with Odd Elasticity
    Yasuda, Kento
    Kobayashi, Akira
    Lin, Li-Shing
    Hosaka, Yuto
    Sou, Isamu
    Komura, Shigeyuki
    [J]. JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2022, 91 (01)
  • [19] THE ONSAGER-MACHLUP FUNCTION FOR DIFFUSION-PROCESSES
    FUJITA, T
    KOTANI, S
    [J]. JOURNAL OF MATHEMATICS OF KYOTO UNIVERSITY, 1982, 22 (01): : 115 - 130
  • [20] Onsager-Machlup functional for the fractional Brownian motion
    Sílvia Moret
    David Nualart
    [J]. Probability Theory and Related Fields, 2002, 124 : 227 - 260