Divisor-bounded multiplicative functions in short intervals

被引:7
|
作者
Mangerel, Alexander P. [1 ,2 ]
机构
[1] Univ Montreal, Ctr Rech Math, 2920 Chemin Tour, Montreal, PQ H3T 1J4, Canada
[2] Univ Durham, Dept Math Sci, Upper Mountjoy Campus,Stockton Rd, Durham DH1 3LE, England
关键词
Multiplicative functions; Automorphic forms; Hooley delta function; Pretentious analytic number theory; Matomaki-Radziwill method; MEAN-VALUES; SUMS; THEOREM;
D O I
10.1007/s40687-023-00376-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We extend the Matomaki-Radziwill theorem to a large collection of unbounded multiplicative functions that are uniformly bounded, but not necessarily bounded by 1, on the primes. Our result allows us to estimate averages of such a function fin typical intervals of length h(log X)(C), with h = h(X)-> infinity and where c = c(f) >= 0 is determined by the distribution of {|f(p)|}(p) in an explicit way. We give three applications. First, we show that the classical Rankin-Selberg-type asymptotic formula for partial sums of |lambda(f)(n)|(2), where {lambda(f)(n)}(n) is the sequence of normalized Fourier coefficients of a primitive non-CM holomorphic cusp form, persists in typical short intervals of length h log X, if h = h(X)-> infinity. We also generalize this result to sequences {|lambda pi(n)|(2)}(n), where lambda(pi)(n) is the nth coefficient of the standard L-function of an automorphic representation pi with unitary central character for GL(m), m >= 2, provided pi satisfies the generalized Ramanujan conjecture. Second, using recent developments in the theory of automorphic forms we estimate the variance of averages of all positive real moments {|lambda(f)(n)|(alpha)}n over intervals of length h(log X)c alpha, with c alpha > 0 explicit, for any alpha > 0, as h = h(X)-> infinity. Finally, we show that the (non-multiplicative) Hooley delta-function has average value >> log log X in typical short intervals of length (log X)(1/2+eta), where eta > 0 is fixed.
引用
收藏
页数:47
相关论文
共 50 条
  • [31] The mean value theorem of the divisor problem for short intervals
    Kiuchi, I
    Tanigawa, Y
    ARCHIV DER MATHEMATIK, 1998, 71 (06) : 445 - 453
  • [32] On the symmetry of the divisor function in almost all short intervals
    Coppola, G
    Salerno, S
    ACTA ARITHMETICA, 2004, 113 (02) : 189 - 201
  • [33] On the divisor problem:: Moments of Δ(x) over short intervals
    Nowak, WG
    ACTA ARITHMETICA, 2003, 109 (04) : 329 - 341
  • [34] Combinatorial identities and Titchmarsh's divisor problem for multiplicative functions
    Drappeau, Sary
    Topacogullari, Berke
    ALGEBRA & NUMBER THEORY, 2019, 13 (10) : 2383 - 2425
  • [35] Multiplicative congruences with variables from short intervals
    Bourgain, Jean
    Garaev, Moubariz Z.
    Konyagin, Sergei V.
    Shparlinski, Igor E.
    JOURNAL D ANALYSE MATHEMATIQUE, 2014, 124 : 117 - 147
  • [36] Multiplicative congruences with variables from short intervals
    Jean Bourgain
    Moubariz Z. Garaev
    Sergei V. Konyagin
    Igor E. Shparlinski
    Journal d'Analyse Mathématique, 2014, 124 : 117 - 147
  • [37] Furstenberg Systems of Bounded Multiplicative Functions and Applications
    Frantzikinakis, Nikos
    Host, Bernard
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2021, 2021 (08) : 6077 - 6107
  • [38] SHORT SUMS OF MULTIPLICATIVE FUNCTIONS
    Kapoor, Vishaal
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2012, 140 (11) : 3693 - 3701
  • [39] On the divisor function and the Riemann zeta-function in short intervals
    Ivic, Aleksandar
    RAMANUJAN JOURNAL, 2009, 19 (02): : 207 - 224
  • [40] The divisor problem for d4 (n) in short intervals
    M. Z. Garaev
    F. Luca
    W. G. Nowak
    Archiv der Mathematik, 2006, 86 : 60 - 66