Remaining useful life prediction for bearing based on automatic feature combination extraction and residual multi-Head attention GRU network

被引:6
|
作者
He, Jiawen [1 ]
Zhang, Xu [1 ]
Zhang, Xuechang [2 ]
Shen, Jie [3 ]
机构
[1] Shanghai Univ Engn Sci, Sch Mech & Automot Engn, Shanghai 201620, Peoples R China
[2] Ningbo Tech Univ, Sch Mech & Energy Engn, Ningbo 315100, Peoples R China
[3] Univ Michigan Dearborn, Coll Engn & Comp Sci, Dearborn, MI 48128 USA
基金
中国国家自然科学基金;
关键词
automatic feature combination extraction; gated recurrent unit; residual multi-head attention mechanism; rolling bearing; RUL prediction; MECHANISM;
D O I
10.1088/1361-6501/ad1652
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Rolling bearings are indispensable parts in mechanical equipment, and predicting their remaining useful life is critical to normal operation and keep equipment in good repair. However, the complex characteristics of bearings make it difficult to describe their degradation characteristics. To address this issue, a novel method that combines an automatic feature combination extraction mechanism with a gated recurrent unit (GRU) network that has a residual multi-head attention mechanism for rolling bearing life prediction is proposed. Firstly, the automatic feature combination extraction mechanism is used to learn the degradation representation of the bearing vibration signal in the time domain, frequency domain, and time-frequency joint domain, and automatically extract the optimal bearing degradation feature combination. Then, the GRU network with residual multi-head attention mechanism is developed to weight and distinguish the learned degradation features, thereby improving the network's attention to important bearing degradation features. In the end, the proposed method is validated on the prediction and the health management of systems dataset and compared to other advanced approaches. The experimental results show that the proposed method can effectively capture the complex and dynamic features of rolling bearings and has high accuracy and generalization ability in rolling bearing life prediction.
引用
下载
收藏
页数:19
相关论文
共 50 条
  • [41] An attention-based multi-scale temporal convolutional network for remaining useful life prediction
    Xu, Zhiqiang
    Zhang, Yujie
    Miao, Qiang
    RELIABILITY ENGINEERING & SYSTEM SAFETY, 2024, 250
  • [42] Remaining Useful Life Prediction for Bearing Based on Coupled Diffusion Process and Temporal Attention
    Lu, Yixiang
    Tang, Daiqi
    Zhu, De
    Gao, Qingwei
    Zhao, Dawei
    Lyu, Junwen
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2024, 73 : 1 - 10
  • [43] Remaining useful life prediction based on graph feature attention networks with missing multi-sensor features
    Wang, Yu
    Peng, Shangjing
    Wang, Hong
    Zhang, Mingquan
    Cao, Hongrui
    Ma, Liwei
    Reliability Engineering and System Safety, 2025, 258
  • [44] Remaining useful life prediction of bearings by a new reinforced memory GRU network
    Zhou, Jianghong
    Qin, Yi
    Chen, Dingliang
    Liu, Fuqiang
    Qian, Quan
    ADVANCED ENGINEERING INFORMATICS, 2022, 53
  • [45] Prediction of circRNA-Disease Associations Based on the Combination of Multi-Head Graph Attention Network and Graph Convolutional Network
    Cao, Ruifen
    He, Chuan
    Wei, Pijing
    Su, Yansen
    Xia, Junfeng
    Zheng, Chunhou
    BIOMOLECULES, 2022, 12 (07)
  • [46] Multi-head self-attention bidirectional gated recurrent unit for end-to-end remaining useful life prediction of mechanical equipment
    Che, Changchang
    Wang, Huawei
    Ni, Xiaomei
    Xiong, Minglan
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2022, 33 (11)
  • [47] A novel spatio-temporal characteristic extraction network for bearing remaining useful life prediction
    Jiang, Li
    Cao, Biaobiao
    Zhang, Xin
    Chen, Bingyang
    Wang, Lei
    Li, Yibing
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2024, 35 (11)
  • [48] Feature Extraction Based on Self-Supervised Learning for Remaining Useful Life Prediction
    Yu, Zhenjun
    Lei, Ningbo
    Mo, Yu
    Xu, Xin
    Li, Xiu
    Huang, Biqing
    JOURNAL OF COMPUTING AND INFORMATION SCIENCE IN ENGINEERING, 2024, 24 (02)
  • [49] Spatial-Temporal Feature Extraction Network for Online Aeroengines Remaining Useful Life Prediction
    Zhu, Ting
    Chen, Zhen
    Zhou, Di
    Xia, Tangbin
    Pan, Ershun
    IEEE Sensors Journal, 2024, 24 (24) : 41731 - 41739
  • [50] MARNet: Multi-head attention residual network for rolling bearing fault diagnosis under noisy condition
    Deng, Linfeng
    Wang, Guojun
    Zhao, Cheng
    Zhang, Yuanwen
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART C-JOURNAL OF MECHANICAL ENGINEERING SCIENCE, 2024, 238 (19) : 9726 - 9747