Comprehensive review of machine learning in geotechnical reliability analysis: Algorithms, applications and further challenges

被引:49
|
作者
Zhang, Wengang [1 ]
Gu, Xin [1 ]
Hong, Li [1 ]
Han, Liang [1 ]
Wang, Lin [2 ]
机构
[1] Chongqing Univ, Sch Civil Engn, Chongqing 400045, Peoples R China
[2] Beijing Normal Univ, Sch Natl Safety & Emergency Management, Zhuhai 519087, Peoples R China
关键词
Machine learning; Reliability analysis; Geotechnical engineering; Uncertainty; squares support vector machine; PCE; Polynomial chaos expansion; ASVM; Adaptive support vector machine; ARVM; Adaptive relevant vector machine; CSRSM; ADAPTIVE REGRESSION SPLINES; SUPPORT VECTOR MACHINE; NEURAL-NETWORK; LANDSLIDE; SIMULATION; PREDICTION; PARAMETERS; MECHANISM; TUNNELS; HYBRID;
D O I
10.1016/j.asoc.2023.110066
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Geotechnical reliability analysis provides a novel way to rationally take the underlying geotechnical uncertainties into account and evaluate the stability of geotechnical structures by failure probability (or equivalently, reliability index) from a probabilistic perspective, which has gained great attention in the past few decades. With the rapid development of artificial intelligence techniques, various machine learning (ML) algorithms have been successfully applied in geotechnical reliability analysis and the number of relevant papers has been increasing at an accelerating pace. Although significant advances have been made in the past two decades, a systematic summary of this subject is still lacking. To better conclude current achievements and further shed light on future research, this paper aims to provide a state-of-the-art review of ML in geotechnical reliability analysis applications. Through reviewing the papers published in the period from 2002 to 2022 with the topic of applying ML in the reliability analysis of slopes, tunneling, and excavations, the pros and cons of the developed methods are explicitly tabulated. The great achievements that have been made are systematically summarized from two major aspects. In addition, the four potential challenges and prospective research possibilities underlying geotechnical reliability analysis are also outlined, including multisensor data fusion, timevariant reliability analysis, three-dimensional reliability analysis of practical cases, and ML model selection and optimization.
引用
收藏
页数:18
相关论文
共 50 条
  • [21] A comprehensive review on intelligent traffic management using machine learning algorithms
    Yash Modi
    Ridham Teli
    Akshat Mehta
    Konark Shah
    Manan Shah
    Innovative Infrastructure Solutions, 2022, 7
  • [22] A comprehensive review for chronic disease prediction using machine learning algorithms
    Rakibul Islam
    Azrin Sultana
    Mohammad Rashedul Islam
    Journal of Electrical Systems and Information Technology, 11 (1)
  • [23] Neuropsychological detection and prediction using machine learning algorithms: a comprehensive review
    Shah, Manan
    Shandilya, Ananya
    Patel, Kirtan
    Mehta, Manya
    Sanghavi, Jay
    Pandya, Aum
    INTELLIGENT MEDICINE, 2024, 4 (03): : 177 - 187
  • [24] A comprehensive review on intelligent traffic management using machine learning algorithms
    Modi, Yash
    Teli, Ridham
    Mehta, Akshat
    Shah, Konark
    Shah, Manan
    INNOVATIVE INFRASTRUCTURE SOLUTIONS, 2022, 7 (01)
  • [25] A Comprehensive Review and Meta-Analysis on Applications of Machine Learning Techniques in Intrusion Detection
    Chattopadhyay, Manojit
    Sen, Rinku
    Gupta, Sumeet
    AUSTRALASIAN JOURNAL OF INFORMATION SYSTEMS, 2018, 22
  • [26] Antenna Optimization using Machine Learning Algorithms and their Applications: A Review
    Pandey A.K.
    Singh M.P.
    Journal of Engineering Science and Technology Review, 2024, 17 (02) : 128 - 144
  • [27] A comprehensive survey of clustering algorithms: State-of-the-art machine learning applications, taxonomy, challenges, and future research prospects
    Ezugwu, Absalom E.
    Ikotun, Abiodun M.
    Oyelade, Olaide O.
    Abualigah, Laith
    Agushaka, Jeffery O.
    Eke, Christopher I.
    Akinyelu, Andronicus A.
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2022, 110
  • [28] A review of supervised machine learning algorithms and their applications to ecological data
    Crisci, C.
    Ghattas, B.
    Perera, G.
    ECOLOGICAL MODELLING, 2012, 240 : 113 - 122
  • [29] Machine Learning for Smart Cities: A Comprehensive Review of Applications and Opportunities
    Dou, Xiaoning
    Chen, Weijing
    Zhu, Lei
    Bai, Yingmei
    Li, Yan
    Wu, Xiaoxiao
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2023, 14 (09) : 999 - 1016
  • [30] Applications of Machine Learning in Knowledge Management System: A Comprehensive Review
    Simon, Casper Gihes Kaun
    Jhanjhi, Noor Zaman
    Goh, Wei Wei
    Sukumaran, Sanath
    JOURNAL OF INFORMATION & KNOWLEDGE MANAGEMENT, 2022, 21 (02)