Combining 2D encoding and convolutional neural network to enhance land cover mapping from Satellite Image Time Series

被引:9
|
作者
Abidi, Azza [1 ]
Ienco, Dino [2 ]
Ben Abbes, Ali [1 ]
Farah, Imed Riadh [1 ]
机构
[1] Natl Sch Comp Sci, Riadi Lab, Manouba, Tunisia
[2] INRAE, UMR TETIS, Montpellier, France
关键词
Deep learning; Convolutional neural networks (CNN); Multivariate time-series; Classification; Encoding representation; CLASSIFICATION;
D O I
10.1016/j.engappai.2023.106152
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The use of high spatial resolution Satellite Image Time Series (SITS) provides an opportunity for a wide spectrum of Earth surface monitoring applications such as Land Use/Land Cover (LULC) mapping. Whereas the majority of Time Series (TS) classification literature concentrates on the analysis of raw 1D signals, here, we investigate a framework for LULC mapping based on 2D encoded multivariate SITS data to enhance their classification performances. In this novel approach, multivariate SITS data are transformed from 1D signals to 2D images using several encoding techniques namely Gramian Angular Summation field (GASF), Gramian angular difference field (GADF), Markov Transition Field (MTF), and Recurrence Plot (RP). Successively, a new multi-band image is derived and it is used as input to a state-of-the-art convolutional neural network (CNN) classification model. The possibility to effectively encode multivariate TS data into 2D representations paves the way to reuse the huge amount of research findings coming from the general field of computer vision and build on reliable and robust methods that have been demonstrated their quality in a multitude of downstream applications. Experiments carried out on three real-world benchmarks covering large spatial areas with contrasted land cover features, namely: Dordogne department in France, Reunion Island an oversee French territory and Koumbia municipality in Burkina Faso, underline the quality of the proposed framework when compared to standard approaches for land cover mapping from SITS and recent methods for multivariate TS classification. Matter of fact, our new framework outperforms the classification performances of standard land cover classification strategies based on the raw TS information achieving an average F1-score of 89.34%, 90.26% and 78.94% for the Reunion Island, Dordogne and Koumbia study site, respectively with an increasing of at least 2.5 points w.r.t. the best competing approach.
引用
收藏
页数:17
相关论文
共 50 条
  • [41] Land Cover Change Detection in Satellite Image Time Series Using an Active Learning Method
    Grivei, Alexandru-Cosmin
    Radoi, Anamaria
    Datcu, Mihai
    2017 9TH INTERNATIONAL WORKSHOP ON THE ANALYSIS OF MULTITEMPORAL REMOTE SENSING IMAGES (MULTITEMP), 2017,
  • [42] Manufacturing feature recognition with a 2D convolutional neural network
    Shi, Yang
    Zhang, Yicha
    Harik, Ramy
    CIRP JOURNAL OF MANUFACTURING SCIENCE AND TECHNOLOGY, 2020, 30 : 36 - 57
  • [43] Convolutional Neural Network for Implementing a 2D Median Filter
    Jung, Soonchul
    Kim, Jae Woo
    Choi, Yoon-Seok
    Jeon, Hyeong-Ju
    Kim, Jin-Seo
    12TH INTERNATIONAL CONFERENCE ON ICT CONVERGENCE (ICTC 2021): BEYOND THE PANDEMIC ERA WITH ICT CONVERGENCE INNOVATION, 2021, : 290 - 292
  • [44] Arrhythmia Classification using 2D Convolutional Neural Network
    Rohmantri, Robby
    Surantha, Nico
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2020, 11 (04) : 201 - 208
  • [45] Improvement in crop mapping from satellite image time series by effectively supervising deep neural networks
    Mohammadi, Sina
    Belgiu, Mariana
    Stein, Alfred
    ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2023, 198 : 272 - 283
  • [46] Semantic segmentation of land cover from high resolution multispectral satellite images by spectral-spatial convolutional neural network
    Saralioglu, Ekrem
    Gungor, Oguz
    GEOCARTO INTERNATIONAL, 2022, 37 (02) : 657 - 677
  • [47] Hilbert Vector Convolutional Neural Network: 2D Neural Network on 1D Data
    Loka, Nasrulloh R. B. S.
    Kavitha, Muthusubash
    Kurita, Takio
    ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING - ICANN 2019: THEORETICAL NEURAL COMPUTATION, PT I, 2019, 11727 : 458 - 470
  • [48] Lagged encoding for image-based time series classification using convolutional neural networks
    Jastrzebska, Agnieszka
    STATISTICAL ANALYSIS AND DATA MINING, 2020, 13 (03) : 245 - 260
  • [49] Statistical Convolutional Neural Network for Land-Cover Classification From SAR Images
    Liu, Xinlong
    He, Chu
    Zhang, Qingyi
    Liao, Mingsheng
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2020, 17 (09) : 1548 - 1552
  • [50] 2-D Convolutional Deep Neural Network for the Multivariate Prediction of Photovoltaic Time Series
    Rosato, Antonello
    Araneo, Rodolfo
    Andreotti, Amedeo
    Succetti, Federico
    Panella, Massimo
    ENERGIES, 2021, 14 (09)