Accelerating the Iteratively Preconditioned Gradient-Descent Algorithm using Momentum

被引:0
|
作者
Liu, Tianchen [1 ]
Chakrabarti, Kushal [2 ]
Chopra, Nikhil [1 ]
机构
[1] Univ Maryland, Dept Mech Engn, College Pk, MD 20742 USA
[2] Tata Consultancy Serv Res, Div Data & Decis Sci, Mumbai 400607, India
关键词
D O I
10.1109/ICC61519.2023.10442768
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we investigate the idea of employing the momentum technique in the iteratively preconditioned gradient-descent (IPG) algorithm with the aim of an improved performance than our previous results. Three formulations are proposed utilizing different momentum terms. A convergence proof is presented for each formulation, providing sufficient conditions for the parameter selections leading to a linear convergence rate. The proposed optimization approaches are applied in the moving horizon estimation (MHE) framework for a unicycle mobile robot location estimation example. The simulation results confirm that the total number of iterations can be reduced when introducing the momentum terms into the original IPG approach.
引用
收藏
页码:68 / 73
页数:6
相关论文
共 50 条
  • [21] Analysis of the Gradient-Descent Total Least-Squares Adaptive Filtering Algorithm
    Arablouei, Reza
    Werner, Stefan
    Dogancay, Kutluyil
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2014, 62 (05) : 1256 - 1264
  • [22] A Variable Step Size Gradient-Descent TLS Algorithm for Efficient DOA Estimation
    Zhao, Haiquan
    Luo, Wenjing
    Liu, Yalin
    Wang, Chen
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-EXPRESS BRIEFS, 2022, 69 (12) : 5144 - 5148
  • [23] Fast pattern recognition using gradient-descent search in an image pyramid
    MacLean, J
    Tsotsos, J
    15TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION, VOL 2, PROCEEDINGS: PATTERN RECOGNITION AND NEURAL NETWORKS, 2000, : 873 - 877
  • [24] Preconditioned Gradient Descent Algorithm for Inverse Filtering on Spatially Distributed Networks
    Cheng, Cheng
    Emirov, Nazar
    Sun, Qiyu
    IEEE SIGNAL PROCESSING LETTERS, 2020, 27 : 1834 - 1838
  • [25] Modeling and analysis of dielectric materials by using gradient-descent optimization method
    Alagoz B.B.
    Alisoy H.Z.
    Koseoglu M.
    Alagoz S.
    Alagoz, B.B. (baykant.alagoz@inonu.edu.tr), 1600, World Scientific (08):
  • [26] Combining Geometric Semantic GP with Gradient-Descent Optimization
    Pietropolli, Gloria
    Manzoni, Luca
    Paoletti, Alessia
    Castelli, Mauro
    GENETIC PROGRAMMING (EUROGP 2022), 2022, : 19 - 33
  • [27] A Gradient-Descent Method for Curve Fitting on Riemannian Manifolds
    Samir, Chafik
    Absil, P. -A.
    Srivastava, Anuj
    Klassen, Eric
    FOUNDATIONS OF COMPUTATIONAL MATHEMATICS, 2012, 12 (01) : 49 - 73
  • [28] Momentum-weighted conjugate gradient descent algorithm for gradient coil optimization
    Lu, HB
    Jesmanowicz, A
    Li, SJ
    Hyde, JS
    MAGNETIC RESONANCE IN MEDICINE, 2004, 51 (01) : 158 - 164
  • [29] A PRECONDITIONED RIEMANNIAN GRADIENT DESCENT ALGORITHM FOR LOW-RANK MATRIX RECOVERY
    Bian, Fengmiao
    Cai, Jian-Feng
    Zhang, Rui
    SIAM Journal on Matrix Analysis and Applications, 2024, 45 (04) : 2075 - 2103
  • [30] Recurrent neural tracking control based on multivariable robust adaptive gradient-descent training algorithm
    Xu, Zhao
    Song, Qing
    Wang, Danwei
    NEURAL COMPUTING & APPLICATIONS, 2012, 21 (07): : 1745 - 1755