Localization and Approximations for Distributed Non-convex Optimization

被引:0
|
作者
Kao, Hsu [1 ]
Subramanian, Vijay [1 ]
机构
[1] Univ Michigan, Ann Arbor, MI 48109 USA
关键词
Distributed optimization; Non-convex optimization; Localization; Proximal approximation; REGULARIZATION; CONVERGENCE;
D O I
10.1007/s10957-023-02328-8
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
Distributed optimization has many applications, in communication networks, sensor networks, signal processing, machine learning, and artificial intelligence. Methods for distributed convex optimization are widely investigated, while those for non-convex objectives are not well understood. One of the first non-convex distributed optimization frameworks over an arbitrary interaction graph was proposed by Di Lorenzo and Scutari (IEEE Trans Signal Inf Process Netw 2:120-136, 2016), which iteratively applies a combination of local optimization with convex approximations and local averaging. Motivated by application problems such as the resource allocation problems in multi-cellular networks, we generalize the existing results in two ways. In the case when the decision variables are separable such that there is partial dependency in the objectives, we reduce the communication and memory complexity of the algorithm so that nodes only keep and communicate local variables instead of the whole vector of variables. In addition, we relax the assumption that the objectives' gradients are bounded and Lipschitz by means of successive proximal approximations. The proposed algorithmic framework is shown to be more widely applicable and numerically stable.
引用
收藏
页码:463 / 500
页数:38
相关论文
共 50 条
  • [21] Gradient Methods for Non-convex Optimization
    Jain, Prateek
    JOURNAL OF THE INDIAN INSTITUTE OF SCIENCE, 2019, 99 (02) : 247 - 256
  • [22] Gradient Methods for Non-convex Optimization
    Prateek Jain
    Journal of the Indian Institute of Science, 2019, 99 : 247 - 256
  • [23] Replica Exchange for Non-Convex Optimization
    Dong, Jing
    Tong, Xin T.
    JOURNAL OF MACHINE LEARNING RESEARCH, 2021, 22
  • [24] Replica exchange for non-convex optimization
    Dong, Jing
    Tong, Xin T.
    1600, Microtome Publishing (22):
  • [25] CLASS OF NON-CONVEX OPTIMIZATION PROBLEMS
    HIRCHE, J
    TAN, HK
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1977, 57 (04): : 247 - 253
  • [26] EXISTENCE THEOREMS IN NON-CONVEX OPTIMIZATION
    AUBERT, G
    TAHRAOUI, R
    APPLICABLE ANALYSIS, 1984, 18 (1-2) : 75 - 100
  • [27] Robust Optimization for Non-Convex Objectives
    Chen, Robert
    Lucier, Brendan
    Singer, Yaron
    Syrgkanis, Vasilis
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 30 (NIPS 2017), 2017, 30
  • [28] Accelerated algorithms for convex and non-convex optimization on manifolds
    Lizhen Lin
    Bayan Saparbayeva
    Michael Minyi Zhang
    David B. Dunson
    Machine Learning, 2025, 114 (3)
  • [29] Distributed Stochastic Gradient Tracking Algorithm With Variance Reduction for Non-Convex Optimization
    Jiang, Xia
    Zeng, Xianlin
    Sun, Jian
    Chen, Jie
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2023, 34 (09) : 5310 - 5321
  • [30] Accelerated Zeroth-Order Algorithm for Stochastic Distributed Non-Convex Optimization
    Zhang, Shengjun
    Bailey, Colleen P.
    2022 AMERICAN CONTROL CONFERENCE, ACC, 2022, : 4274 - 4279